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Abstract—A common problem in the field of robotics is to
coordinate motions of multiple robots to ensure the shortest
possible execution time. The problem is known PSPACE-
complete, thus, it is impossible to find the best solution in a
reasonable time for large scale problems. For this reason, in
this work we look for sub-optimal solutions by systematically
improving a given one. We present a heuristic algorithm to
reduce execution time of a path by changing robots’ priorities
in case of path overlap. The algorithm is applied to a solution
computed by a decoupled method in a discrete event system
context. It is shown that the proposed approach is effective in
finding a solution with shorter execution time. Tests show that
the proposed algorithm can achieve improvement up to 45%.

I. INTRODUCTION

The multi-robot path-planning (MRPP) problem is a fun-
damental task in robotics. In MRPP the aim is to plan a
path for multiple robots attempting to move through the
same environment. In such problems, each robot has a speci
fic start position and has to reach its goal position so that
all robots reach their goal position in the minimum time
[1], not necessarily in the minimum number of moves.
The difficulty of finding this solution lies in the fact that
when multiple robots move through a shared environment to
perform independent tasks each one will become a mobile
obstacle for the others, therefore the motion planning of each
individual robot has to take into account motion of the others.

A MRPP problem can be solved by coupled or decoupled
methods. The former often try to provide a complete solution
[2] [3] by searching the path through a combined state space
of all robot, but have high requirements for time computation
because of the PSPACE-complexity of the problem [4].
The latter reduce the problem complexity by calculating
paths independently for each robot [5] [6] which are then
coordinated in a unique path avoiding all possible conflicts
[7]. However they cannot guarantee to find a solution in all
cases [8], except under certain conditions [9], and cannot
guarantee optimal solution.

Of particular interest is to understand how and in which
cases a given not optimal path can be improved in terms of
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time execution. In this paper we give a formal description
of the problem in a discrete event system (DES) context and
analyze in which cases a path can be improved by rearranging
movements within a path.

This paper improves upon [10] where some of us intro-
duced a method for further optimizing a path by identifying
single movement which can be swapped with another one,
whereas here we propose a new method which is based
on prioritizing multiple movements of the same robot with
respect to other movements. This allows us to find new
solutions because the proposed method is able to switch
robots’ priorities in case of path overlap. The new path is
guaranteed to be valid, assuming the original path was valid,
but results in a better execution time.

This paper is divided into six sections. In Section II we first
provide all relevant and necessary concepts about languages
and time-weighted automata. Section III gives a thorough
description of the problem we are solving and how it is
represented in DES. Section IV gives the algorithms used to
improved the planned path. Section V shows experimental
resuls for our algorithm. Section VI gives some concluding
remarks.

II. PRELIMINARIES

Event sequences and languages are a simple means to de-
scribe discrete event system behaviours. Their basic building
blocks are events σ, which are taken from an alphabet Σ.

A string is a sequence of events s = σ1 . . . σn. The set of
all strings of events from Σ is denoted Σ∗ which includes
the empty string ε. A language is a set of string L ⊆ Σ∗.
The concatenation of two strings s, t ∈ Σ∗ is written as st.
A substring of s is denoted s[p : q] where p, q are the first
and last event indexes of s. System behaviours are modelled
using automata.

A finite-state automaton is a 5-tuple G =
(X,Σ, δ, x0, Xm) where X is a finite set of states, Σ
is a finite alphabet of events, δ : X × Σ 7→ X is the
(partial) transition function, x0 ∈ X is the initial state, and
Xm ⊆ X is the set of marked states. The transition relation
is extended to strings in Σ∗ by letting δ(x, ε) = x for all
x ∈ X , and δ(x, sσ) = δ(δ(x, s), σ). Furthermore !δ(x, σ)
means that exists y such that δ(x, σ) = y, i.e. δ(x, σ) is
defined.

The language of the automaton G is L(G) = {s ∈
Σ∗|!δ(xo, s)}. The marked language of the automaton G is
Lm(G) = {s ∈ Σ∗|δ(xo, s) ∈ Xm}.

A resource is a set of events which cannot be executed
simultaneously r ⊂ Σ. For every pair of events σ, σ′ ∈ Σ
there exists a resource r ∈ R such that σ, σ′ ∈ r if and only
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Figure 1: Translation of MRPP problem in a DES context:
on the left a sample of environment and on the right an
automaton representing a robot with start and goal position.

if the firings of σ and σ′ are mutually exclusive, i.e. if one
event is under execution the other cannot be fired.

The projection of a string s over a resource r returns a
new string denoted projr(s) where events not requiring that
resource are removed. The co−projection of a string s over
a resource r returns a new string denoted co-projr(s) where
events requiring that resource are removed.

A finite-state time-weighted automaton is a 3-tuple G =
(G, f,R), where G is a finite-state automaton, f : Σ 7→ R+ is
a weight function which assigns to each event in Σ a positive
real number called weight which denotes the time required
to execute the corresponding event, and R ⊆ 2Σ is a set of
resources.

When a string s is executed the events are fired sequen-
tially based on the order in the string. Therefore, each event
σk ∈ s has a starting time tsk of firing and an execution time
f(σk), so that its completion time is tsk + f(σk).

A time-stamp of the string s with respect to G which
establishes the starting time of each event is a nondecreasing
list of nonnegative real numbers ρs = [ts1, . . . , t

s
n] ⊂ (R+

0 )∗

where tsk ≤ tsk+1 for k ∈ {1, . . . , n}. Several time-stamps
may correspond to a string, we denote PG(s) the set of all
time-stamps of s with respect to G.

A legal time-stamp of the string s with respect to G =
(G, f,R) is any time-stamp ϑ ∈ PG(s) such that for all
q, v ∈ {1, · · · , n} and q < v if σq, σv ∈ r and tsk + f(σk) ≤
tsv . We denote ΘG,f,R(s) the set of all legal time-stamps of
s.

The execution time of a string s is measured from the time
the first robot starts moving to the time at which the last robot
reaches its destination. From now on we suppose ts1 = 0, i.e.,
we start from the time when the first robot moves.

Definition 1. Let G = (G, f,R) be a time-weighted
automaton and let s = [σ1, . . . , σn] ∈ L(G) be a string.

The minimum execution time of the string s is
υG,f,R(s) = min

ϑ∈ΘG,f,R(s)
{max{ts1 + f(σ1), · · · , tsn + f(σn)}}.

As a convention, υG,f,R(ε) := 0. �

The minimum execution time of the string s can be
computed as described in [10].

III. PROBLEM FORMULATION

The environment where a robot operates can be partitioned
into a grid, where white squares denote accessible positions
and black squares denote inaccessible positions. A robot can
move from one square to another one if the two squares
are adjacent, i.e., have a common side, if the transition is
avalaible, i.e., the side is not emboldened, and if the arrival
square is empty. We construct a timed automata model G
representing multiple robots navigating this envirenment by
creating a timed automaton G = (G, f,R) for each robot.

We first define an automaton G which represents the
possible movements of the g-th robot, where each state xj
represents the discrete j-th position in the environment which
the robot can move to and each event σ = (g, i, f) ∈ Σ
represents the act of the g-th robot moving from the i-
th position to the f -th position. The initial state of the
automaton is set to be the start position of g-th robot and
the marked state is set to be the goal position. In Figure 1
it is shown an example of an environment and a robot (here
g = 1) moving in it.

A path which potentially can direct a set of robots from
their start position to their goal position is a particular string
termed trace, i.e. a sequence of movements which when
executed directs all robots to reach their destinations without
collisions.

Definition 2. Let G = {G1, . . . , Gn} be a set of automata,
let G = G1×G2× . . .×Gn let be the composite automaton
of the set G, let x0 = (x0,1, · · · , x0,n) be the state tuple of
initial states of all automata and let s ∈ L(G) be a string
generated by the composite automaton G.

The string s is a trace if s ∈ Lm(G), i.e. if the string s is
marked by the composite automaton G. �

Secondly, we define the weight function f as a function
which assigns a weight to all events σ ∈ Σ equal to the time
required by the robot to execute the movement.

Finally we define the set of all resources R of the system.
For each robot automaton Gg ∈ G, where G is the set of
all robot automata, there exist a robot-resource rGg such that
each movement event of the g-th robot is in that resource. For
each position Pj ∈ P, where P is the set of all positions, there
exist a position-resource rPj

such that each movement event
(across all robots) which involves the j-th position is in that
resource. An event σ = (g, i, f) describes motion of the g-th
robot, modelled by the Gg automaton, from the position Pi to
the position Pf , therefore this event requires three resources,
one robot-resource and two position-resources.

The set of resources R ensures that a robot can not
enter a position while another robot is vacating it, but we
also wish to ensure that a robot cannot enter a position if
another robot is still in it. For this reason we define the
function collisionfree, which takes as argument a state tuple
(x1, . . . , xn), where each xg is the current state of automata
g and evaluates to true if and only if for every distinct pair
of indices i, j it holds that xi 6= xj . This is equivalent to
saying that two robots cannot be in the same position at the
same time.



Algorithm 1 SwapTrace

Require: A valid trace t = σ1 . . . σ|s| ∈ Σ∗, a set of re-
sources R ⊆ 2Σ, a transition weight function f : Σ 7→ R,
an integer number N .

1: s, v ← CompressTrace (t, R, f)
2: S ← ∅
3: for q ∈ {1, . . . , |s|} do
4: (g, i, f)← σq
5: s̄← projrGg

(s[1 : q])
6: if |s̄| ≥ N then
7: ŝ← s̄[|s̄| −N + 1 : s̄] . last N events
8: Let be σp and σq the first and last event in ŝ
9: Determine, if there is, the lowest q̂ < p such that

ŝ and σq̂ are independent. . see Definition 5
10: if q̂ exists then
11: S ← S ∪ {(ŝ, q̂)}
12: end if
13: end if
14: end for
15: for (ŝ, q̂) ∈ S do
16: Events in ŝ belong to the g-th robot
17: s∗ ← co-projrGg

(s)
18: s′ ← s∗[1 : q̂ − 1] · ŝ · s∗[q̂ : |s∗|]
19: s′, v′ ← CompressTrace (s′, R, f)
20: if v′ < v then
21: s, v ← t′, v′

22: end if
23: end for
24: return s

Definition 3. Let G = {G1, . . . , Gn} be a set of automata,
let G = G1×G2× . . .×Gn let be the composite automaton
of the set G, let x0 = (x0,1, · · · , x0,n) be the state tuple of
initial states of all automata and let s ∈ Lm(G) be a trace.

The trace s is valid if for every string p ∈ Σ∗ such that
p ≤ s it holds collisionfree(δG(x0, p)). We denote V (G)
the set of all valid traces of G. �

Given the above setup, our problem is to improve a valid
trace by reducing its minimum execution time.

Problem 1. Let G = {G1, . . . , Gn} be a set of automata, let
f = {f1, . . . , fn} be a set of weight functions, let R ∈ 2Σ

be a set of resources and let s ∈ V (G) be a valid trace.
How can we find a valid trace s′ ∈ V (G) such that

υG,f,R(s′) is less than υG,f,R(s)? �

IV. ALGORITHM

The basic concept of Algorithm 1 is to change robots’
priorities in case of path overlap between at least two robots
by moving backward a subsequence of events within a trace.
Given a valid trace s, Algorithm 1 allows to identify all
subsequences ŝ containing N events which can be moved
backward in the trace and the first event σq̂ before which they
can be moved. This is done at lines 3− 14. A subsequence
which can be potentially moved backward in the trace is
called a dense subsequence.

1          2          3

4          5          6

7          8          9

S1 S2

G2G1

Figure 2: Swap example: S1, S2 and G1, G2 are respectively
start and goal positions of robots 1 and 2.

Definition 4. Let G = {G1, . . . , Gn} be a set of automata,
let R ⊆ 2Σ be a dependance satisfying resource set with
respect to G, let t = σ1 . . . σ|s| ∈ V (G) be a valid trace, let
Σg be the alphabet of the g-th robot.

A dense subsequence of t is any subsequence ŝ = [σi|σi ∈
s] such that ∀σ ∈ ŝ then σ ∈ Σg and given two subsequent
events σx, σz ∈ ŝ there no exists an event σy ∈ s such that
x < y < z and σy ∈ Σk. �

If a dense subsequence ŝ can be moved before an event
σq̂ getting a new valid trace, we call them independent.

Definition 5. Let G = {G1, . . . , Gn} be a set of automata,
let be t = σ1 . . . σ|s| ∈ V (G) be a valid trace, let ŝ =
σp . . . σq be a dense subsequence of t, let be σq̂ an event
such that q̂ < p

The dense subsequence ŝ and the event σq̂ are independent
if the string s resulting from ŝ being moved before σq̂ in t is
a valid trace, i.e. s ∈ V ((G)). �

After identifying all couples subsequence-index, Algo-
rithm 1 perform all the swaps and, if there is, return the
one which gives the shortest execution time. This is done at
lines 15− 25.

Algorithm 1 makes use of another algorithm called
CompressTrace [11] which optimizes a valid trace, in terms
of minimum execution time, by rearranging events within
it without changing robots’ priorities. This rearrangement
is done by identifying single events which can be moved
backward in the trace. After the rearrangement, it also
computes the minimum execution time v of the resulting
string s.

In order to better understand which kind of couples
subsequence-index the algorithm is able to find, an example
is given.

Example 1. Referring to Figure 2 a valid trace can
be t = (1, 1, 2)(1, 2, 5)(1, 5, 4)(2, 3, 2)(2, 2, 5)(2, 5, 8)(2, 8,
9)(2, 9, 6). The minimum execution time of the string s is
v = 8 considering all event weights equal to 1. In this
example robots 1 and 2 share a path (i.e. states 2-5) and robot
1 has priority of access to this. Chosen N = 3, Algorithm 1 is
able to find that the subsequence ŝ = (2, 3, 2)(2, 2, 5)(2, 5, 8)
can be moved before event σq̂ = (1, 1, 2) without giving rise
to collisions. This swap means that now robot 2 has priority



Table I: Results for Cyclic Corridor Environment
UNIT

ROBOTS
CONGESTION %

Sc ≡ Sse %
Ssw %
Sbs %

Tc s
Tse s
Tsw s
Tbs s

µc

µse

µsw

µbs

µc/LBE
µse/LBE
µsw/LBE
µbs/LBE

Ise %
Isw %
Ibs %

RESULTS

5 10 15 20 25 30 35 40
3 7 11 15 19 23 27 31

100 100 100 100 100 100 100 96
100 100 100 100 100 100 100 96
100 100 100 100 100 100 100 98

0.26 1.42 4.23 9.44 17.01 27.78 39.28 51.24
0.36 1.72 4.77 10.25 18.02 29.03 40.51 52.33
0.5 2.67 7.37 15.55 27.04 42.53 58.68 75.01
0.86 4.39 12.14 25.8 45.06 71.56 99.2 127.34

18.03 20.3 22.48 25.2 28.27 33.14 37.98 48.07
17.95 20.08 22.08 24.51 27.49 31.99 36.4 44.93
17.95 20.02 21.91 24.05 26.57 31.13 35.42 43.83
17.95 20.02 21.89 24.02 26.45 30.78 34.81 42.95

1.01 1.04 1.12 1.24 1.36 1.59 1.8 2.22
1.01 1.03 1.1 1.21 1.32 1.53 1.73 2.08
1.01 1.03 1.09 1.18 1.28 1.49 1.68 2.03
1.01 1.03 1.09 1.18 1.27 1.47 1.65 1.99

34.01 25.26 16.91 14.3 10.2 9.39 9.32 11.94
34.01 32.02 24.71 23.67 22.41 16.4 14.98 15.83
34.01 32.02 25.49 24.27 23.94 19.32 18.67 19.25

Figure 3: Cyclic Corridor Environment

of access to the shared path. The resulting string will be
snew = (2, 3, 2)(2, 2, 5)(2, 5, 8)(1, 1, 2)(1, 2, 5)(1, 5, 4)(2, 8,
9)(2, 9, 6) and after the reordering made by CompressTrace
at line 20 the final trace will be tnew = (2, 3, 2)(2, 2, 5)(1,
1, 2)(2, 5, 8)(1, 2, 5)(2, 8, 9)(1, 5, 4)(2, 9, 6) with execution
time vnew = 5. �

There are three potential reasons why one subsequence ŝ =
σp . . . σq of events which belong to the same robot and one
event σm, which occurs before first event of ŝ, should not be
swapped, i.e. they are not indipendent. When we talk about
swapping we mean moving ŝ before σq̂ , further we need
to refer to a valid trace t ∈ V (G) because the dependance
properties between σm and ŝ depend not only on them but
also on events between them. First if there exists σi /∈ ŝ such
that q̂ < i < q and it shares an alphabet with events in ŝ,
then swapping σq̂ and ŝ leads to a string s′ /∈ L(G). Second
if there exists σi /∈ ŝ such that q̂ < i < q and it moves in
or out of the state which σq moves into, then swapping σq̂
and ŝ leads to collision. Third if there exists σi /∈ ŝ such that
q̂ < i < q and it is the first event after σq̂ which belong to a
language Σj , then if σi leaves a state which belongs to the
path of ŝ, then swapping σq̂ and ŝ leads to collision.

Example 2. Given the valid trace t = σ1σ2σ3σ4σ5σ6

σ7σ8 = (2, 2, 3)(1, 8, 9)(1, 9, 6)(1, 6, 5)(1, 5, 4)(2, 3, 6)
(1, 4, 1)(2, 6, 9), let ŝ = σ6σ8 = (2, 3, 6)(2, 6, 9) be
a subsequence of t, we analyze swapping ŝ and events
σ1, σ2, σ3, σ4, σ5. Swapping ŝ with σ1 will results in a string
not generated by L(G) because they share the same alphabet
(first case). Swapping ŝ with σ2 or with σ3 will result in an
invalid trace because both move in or out the state 9 and
the last event of ŝ move in the same state 9 (second case).

Table II: Results for Grid Environment
UNIT Grid 7x7 Grid 11x11 Grid 15x15

ROBOTS 4 8 12 16 9 19 28 38 17 35 52 70
CONGESTION % 10 20 30 40 10 20 30 40 10 20 30 40

Sc ≡ Sse % 100 100 100 91 100 100 100 73 100 100 98 38
Ssw % 100 100 100 91 100 100 100 74 100 100 98 40
Sbs % 100 100 100 94 100 100 100 85 100 100 98 51

Tc s 0.05 0.26 0.71 1.26 0.5 3.46 10.28 17.77 2.88 23.51 69.65 103.81
Tse s 0.06 0.29 0.75 1.29 0.61 3.76 10.71 17.91 3.6 25.49 71.74 104.25
Tsw s 0.07 0.36 0.94 1.61 0.9 5.8 15.54 26.03 7.62 51.23 125.23 179.5
Tbs s 0.13 0.65 1.69 2.89 1.5 9.56 26.25 43.94 11.22 76.72 196.97 283.75

µc 7.89 9.57 12.82 20.8 13.55 16.94 23.84 42.49 20.06 25.04 35.66 63.03
µse 7.89 9.44 12.12 19.32 13.52 16.51 22.27 37.9 19.86 24.32 33.43 55.92
µsw 7.89 9.44 12.07 18.98 13.52 16.41 21.89 36.34 19.82 23.91 31.91 51.85
µbs 7.89 9.44 12.04 18.94 13.52 16.4 21.66 35.99 19.82 23.79 31.41 52.55

µc/LBE 1.04 1.13 1.44 2.24 1.03 1.13 1.53 2.67 1.02 1.19 1.62 2.77
µse/LBE 1.04 1.11 1.36 2.08 1.03 1.1 1.43 2.39 1.01 1.16 1.52 2.45
µsw/LBE 1.04 1.11 1.36 2.07 1.03 1.1 1.41 2.28 1.01 1.14 1.45 2.32
µbs/LBE 1.04 1.11 1.35 2.05 1.03 1.1 1.39 2.26 1.01 1.13 1.43 2.33

Ise % 0 12.98 17.83 12.56 8.95 22.13 19.08 17.25 45.01 18.15 16.42 17.71
Isw % 0 12.98 19.01 13.92 8.95 27.71 23.86 23.75 54.46 29.11 27.63 25.09
Ibs % 0 12.98 19.91 15.23 8.95 28.18 26.72 24.9 54.46 31.91 31.29 24.58

Figure 4: Extensible Grid Environment

Swapping ŝ with σ4 will result in an invalid trace because σ4

is the first event between σ4 and last event of ŝ which belong
to the language Σ1 and it move out the state 6 and there is
one event of ŝ, i.e., (2, 3, 6), which move in the same state 6
(third case). Swapping ŝ with σ5 will result in an valid trace
because all the events between σ5 and last event of ŝ which
do not belong to ŝ (i.e. (1, 5, 4) and (1, 4, 1)) are not in one
of these 3 cases. �

V. EXPERIMENTAL RESULTS

A. Description

In order to test the effectiveness of the presented algorithm
we first computed a solution [10] for the MRPP problem in
two different environment: Cyclic Corridor and Extensible
Grid depicted in Figures 3 and 4. To generate a random
problem instance with n robots we selected a random start
and goal position from amongst all the possible free location
in the environment, such that no two robot share the same
start position, nor do they share the same goal position. It
is possible for a robot to have another robot’s start position
as its goal position. It is also possible for a robot to have
its current start position as its goal position, in which case
the robot will not have to move other than to get out of the
way of other robots. The algorithms were run on a Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz.

For each experiment we calculate a lower bound (LB)
for the minimum execution time of the solution in the
following manner. We first calculate the shortest path for
each individual robot assuming that there are no other robots
to get in its way. Then we find the robot with the longest
journey and select it’s duration as our LB.
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Figure 5: Chart showing average additional time required to
improving a trace using Algorithm 1 vs number of robots
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Figure 6: Chart comparing µ/LB between tests c, se and sw
in Table II vs number of robots.

In each environment, four types of test were carried out
and Tables I and II show their average results over 100
experiments. For purposes of presentation we will refer to
these cases by an acronym. First we found a solution to the
problem; we refer to this case by acronym “c” which stands
for “Compare”. Second we applied the Algorithm 1 to the
result of test c for N ∈ {1, . . . , LB}; we refer to this case by
acronym “se” which stands for “Swap at the End”. Third we
found a new solution applying Algorithm 1 while computing
the path; we refer to this case by acronym “sw” which stands
for “Swap While”. Forth we considered when at least one of
tests se and sw succeeded and we took the best result; we
refer to this case by acronym “bs” which stands for “Best
Swap”.

Table I uses Figure 3 as environment and Table II uses
Figure 4 as environment, the grid is also extended to an
11 by 11 and a 15 by 15 grid. In these tables, ROBOTS
represent the number of robots being coordinated, CONGES-
TION represents congestion percentage, i.e., the number of
robots coordinated as a percentage of the number of free
slots in the grid, Si% represents the number of experiments
which found a path for all robots, Ti(s) is the average time
required to run the expirement, µi is the average minimum
execution time of the solution, µi/LB is the average ratio of
the minimum execution time compared to our lower bound,
Ii is the improvement obtained applying test i over test c,
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Figure 7: Chart showing average additional time required to
compute a trace applying Algorithm 1 vs number of robots
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Figure 8: Chart comparing additional time between tests se
and sw over c vs size of environment.

where “i” denotes the acronym of the test. In Equation 1 we
define the improvement obtained with our algorithm for each
test i ∈ {se, sw, bs}.

Ii =

{
1− µi−LB

µc−LB µc 6= 0

0 otherwise
(1)

B. Analysis of results

We start analyzing tests se which are the most important
to evaluate the direct effectiveness of Algorithm 1 introduced
in this paper. Comparing results related to tests se we find
that Algorithm 1 does not appear to add a significant amount
of time to the time required for computing the solution.
On the other hand there does appear to be a considerable
increase in the quality of the returned trace, moreover it can
be seen that as the congestion increases the use of Algorithm
1 becomes more important in absolute terms but not in
terms of percentage. When congestion reach values around
30% an improvement between 11% and 19% is reached in
both environments. Comparing improvements reached with
all different congestion percentages in open corridor (up to
34%) and grid (up to 45%) environments we can say that
improvement depends not only on the congestion but also on
the structure of the environment. This is not further discussed
in this paper however.



We now analyze tests sw which can give an hint on how
much Algorithm 1 can be useful if applied at each phase of
a generic decoupled approach, in which paths are calculated
independently for each robot: intuitively, the improvement
that can be obtained by this application of the algorithm
depends on the decoupled technique used. Comparing results
related to tests sw we find that applying the addition of
Algorithm 1 in the corridor environment it appears to cause a
noticeable slow down in finding a solution, the time increases
around 50% in the corridor and around 100% in the grid.
Nevertheless, on the whole, the quality of solutions has
improved considerably compared to tests se, between 10%
and 50%. Percentage of founded solutions does not appear
to change significantly.

We are now interested in understanding which relation
exists between solutions founded by tests sw and tests se,
so we analyzed all cases in which at least one of this two
tests found a solution. We can see that average quality of
solutions is not changed significantly but we are able to find
an higher number of solutions. The best environment to see
this is the Grid 15 by 15, in which we found 13% more
solutions (and only 2% more in tests sw). This suggests that
when a decoupled approach is applied and when a new path
is computed, chances to find a solution depend not only on
the path of each robot but also on the temporal sequence in
which various states are occupied.

Figure 5 gives a chart comparing the time required to
improve a trace using Algorithm 1 vs the number of robots
which need to be coordinated in different environments and
Figure 7 gives a chart comparing the extra time required to
compute a trace applying Algorithm 1 at each step vs the
number of robots which need to be coordinated in different
evnironments. These charts show different data from Tables
I-II. If the latter shows the total time needed to compute
each path in all cases (success and fail), here we consider
only cases in which tests c succeeded and then calculated
in Figure 5 the additional time required by Algorithm 1 to
improve the resulting trace and in Figure 7 the additional time
required to compute again the trace by applying Algorithm 1
each step. They show that time complexity appears to grow
polynomially with respect to the number of robots which
must be coordinated which is in line with our expectations,
and each curve seems to differ from the other by a constant
factor which is proportional to the size of the environment.

Figure 6 shows the degree to which Algorithm 1 improves
trace quality as the number of robots increases for the
Extensible Grid Environment in the cases in which it is
applied only at the end or during each step of a decoupled
approach. We can distinguish three groups of curves, each
one relates to a different dimension of the grid, respectively
7 by 7, 11 by 11 and 15 by 15. It shows that as the number
of robots which need to be coordinated increases the use
of Algorithm 1 becomes more important in absolute terms,
where at 70 robots the original algorithm has an average
µ/LB of 2.77 compared to the improved trace µ/LB of
2.45 and the new trace µ/LB of 2.32.

Figure 8 shows the same timings described for Figures 5

and 7 vs the number of positions in the environment. This
data was obtained by running Algorithm 1 on extensible grid
environment with dimension between 11 by 11 and 67 by 67.
Under all circumstances exactly 20 robots were coordinated
and each data point represents the average of 100 executions.
The execution time only seems to grow roughly polynomially
with the size of the environment for both cases se and sw.

VI. CONCLUSION

In this paper we proposed a heuristic algorithm to improve
solutions to the multi-robot path-planning problem imple-
mented in a DES context [10] using timed discrete event
automata [12]. The algorithm was tested on a variety of
problems and it was shown that its use in any centralized
planning strategy is useful in terms of execution time, reduc-
ing it up to 45% in our tests, and number of solutions founded
for the multi-robot path-planning problem, up to 13% more.
Future works will aim at a smart choosing of the parameter
N , planning strategies to avoid cases in which applying the
swap strategy a solution is not found and testing of more
complicated environments, such as the presence of places in
which a vehicle cannot stop or different movements timing.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[2] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems.” in 24th AAAI Conf. Artif. Intell. (AAAI), vol. 1, 2010, pp.
173–178.

[3] T. Standley and R. Korf, “Complete algorithms for cooperative
pathfinding problems,” in 22nd Int. Joint Conf. Artifi. Intell. (IJ-
CAI/AAAI), 2011, pp. 668–673.

[4] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects; pspace- hardness of the
”warehouseman’s problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[5] J. H. Oh, J. H. Park, and J. T. Lim, “Centralized decoupled path
planning algorithm for multiple robots using the temporary goal con-
figurations,” in 2011 Third International Conference on Computational
Intelligence, Modelling Simulation, Sept 2011, pp. 206–209.

[6] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 5954–5961.

[7] J. van den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, ser. Springer Tracts
in Advanced Robotics, C. Pradalier, R. Siegwart, and G. Hirzinger,
Eds. Springer Berlin Heidelberg, 2011, vol. 70, pp. 3–19.

[8] G. Sanchez and J. C. Latombe, “Using a prm planner to com-
pare centralized and decoupled planning for multi-robot systems,” in
Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292), vol. 2, 2002, pp. 2112–2119 vol.2.

[9] M. Cap, P. Novak, A. Kleiner, and M. Selecky, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,”
Automation Science and Engineering, IEEE Transactions on, vol. 12,
no. 3, pp. 835–849, July 2015.

[10] S. Ware and R. Su, “Incremental scheduling of discrete event systems,”
in 2016 13th International Workshop on Discrete Event Systems
(WODES), May 2016, pp. 147–152.

[11] ——, “An application of incremental scheduling to a cluster pho-
tolithography tool,” in 20th IFAC World Congress, (IFAC WC 2017),
May 2017, p. Submitted to.

[12] R. Su, J. H. van Schuppen, and J. E. Rooda, “The synthesis of time
optmial supervisors by using heaps-of-pieces,” IEEE Transactions on
Automatic Control, vol. 57, pp. 105–118, 2012.


