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Abstract. In this paper we propose a novel consensus protocol for
discrete-time multi-agent systems (MAS), which solves the dynamic con-
sensus problem on the max value, the so-called dynamic max-consensus
problem. In the dynamic max-consensus problem the objective of each
agent is to estimate the time-varying value of the maximum instanta-
neous value among the reference signals associated to the agents in the
network, by exploiting only local interactions. The proposed interac-
tion protocol enables the agents to solve this problem with an a pri-
ori bounded error, without exchange of inputs information among the
agents. Furthermore, the proposed protocol can be tuned by means of
a tuning parameter, enabling a trade-off between convergence time and
steady-state error. We also provide a preliminary characterization of the
maximum relative tracking error. Numerical simulations corroborate the
theoretical analysis of the convergence properties of the proposed proto-
col.

Keywords: stability, convergence, dynamic max-consensus, distributed
estimation, multi-agent systems, time-varying reference signals, bounded
tracking error

1 Introduction

Motivation. In multi-agent systems the consensus problem consists in the
design of a mechanism based on local interactions among agents in a network
so that all their state variables of the agents converge or ”agree” about the
same value. In the consensus problem agreement is usually performed on a set of
initial states associated to the agents, while in the dynamic consensus problem
to each agent is associated a time-varying reference signal and the objective of
the consensus problem is to make the state variables of the agents agree upon a
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function of the time-varying reference signals, such as average, median, maximum
and so on.

While the literature has focused significantly on the dynamic average-consensus
problem [1–9], estimating the average is not always the goal. In fact, in this paper
we focus on estimating the maximum among the reference signals, i.e., we address
the dynamic max-consensus problem. Applications of dynamic max-consensus
protocols mainly reside in the field of distributed synchronization, such as time-
synchronization [10] and target tracking [11], and network parameter estimation,
such as cardinality [12] and highest/lowest node degree [13].

Thus, in this paper we propose the first dynamic consensus protocol in the
literature capable of estimating with bounded error the time-varying maximum
value among the set of reference signals given as input to the agents.

Literature review. In the literature the so-called max-consensus problem
has been thoroughly investigated. Its objective is to make the states of the agents
converge to the maximum of their initial states. The most popular max-consensus
protocol consists in initializing the network to a set of values and let agent update
its state at each instant of time by taking the maximum value among the value
of the neighbors’ state and its own state [14].

The work in [15] proposes conditions to achieve max-consensus and compute
convergence rate of these protocols for different communication topologies. Only
little effort has been paid to analyze slightly different but much more compli-
cated variations of this problem. In particular, convergence results have only
been provided for synchronous switching topologies [16] and for probabilistic
asynchronous fixed frameworks [17]. The contribution of introducing time de-
lays in the communications is due to [18], while [19] is the first work allowing
noise in the communications. Finally, the case with agents with the possibility
to join or leave the network, so-called open multi-agent systems, is addressed in
[20].

If a static consensus protocol is used to perform a distributed estimation upon
some time-varying quantities, known or measured by the agents, the protocol
requires to be re-initialized in the whole network each time the value of the
function to be estimated changes. To avoid re-initialization issues of consensus
protocols, dynamic consensus protocols has to be investigated. However, to the
best of our knowledge, there are not existing results addressing the dynamic
max-consensus problem, object of this paper.

Main contribution. The main contribution of this paper consists in the first
dynamic consensus protocol that solves the dynamic consensus problem on the
max value in discrete-time. We first characterize in Theorem 1 its convergence
properties for constant inputs and show that the convergence is reached with
bounded and tunable steady-state relative error with finite convergence time;
for time-varying inputs, whose relative change is asked to be bounded over time
(see Assumption 1 in Section 3), we also give a characterization in Theorem 2
of its maximum relative tracking error.

Structure of the paper. In Section 2 technical preliminaries regarding the
multi-agent framework considered in the paper are presented. In Section 3 the
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problem statement addressed in this work is formally presented. In Section 4 the
proposed dynamic max-consensus (DMC) protocol is stated and qualitatively
discussed. In Section 5 the convergence properties of the DMC protocol along
with its tuning conditions are theoretically characterized. In Section 6 numer-
ical simulations to corroborate the theoretical analysis are shown. Finally, in
Section 7 concluding remarks are given.

2 Preliminaries

We consider a MAS whose pattern of interactions is represented by an undirected
graph G = (V,E) where V = {1, . . . , n} is the set of nodes, i.e., the agents, and
E ⊆ V × V is the set of edges. An edge (i, j) ∈ E, with i 6= j, exists in the
graph if there exists a communication channel between agent i and j. Since the
graph is undirected, (i, j) ∈ E if and only if (j, i) ∈ E. Nodes that can exchange
information are said to be neighbors. A set of neighbors Ni is associated to each
node i, defined as Ni = {j ∈ V : (i, j) ∈ E}, which represents the agents in the
graph which share a point-to-point communication channel with agent i.

A path πpq between two nodes p and q in a graph is a finite sequence of m
edges ek = (ik, jk) ∈ E that joins node p to node q, i.e., i1 = p, jm = q and
jk = ik+1 for k = 1, . . . ,m − 1. An undirected graph is said to be connected
if there exists a path πij between any pair of nodes i, j ∈ V . The diameter of
a graph, denoted as δ(G), is defined as the longest among the shortest paths
among any pair of nodes i, j ∈ V . For any connected undirected graph it holds
δ(G) ≤ n− 1 with n being the number of nodes.

3 Problem statement

Consider a network of agents whose topology is represented by an undirected
connected graph G. Each agent i has access to a time-varying external reference
signal ui(k) ∈ R satisfying the next assumption1.

Assumption 1. Each unknown exogenous reference signal is strictly positive,
ui(k) > 0 and their relative change is bounded by a constant Π ∈ (0, 1), i.e.,

|ui(k + 1)− ui(k)|
|ui(k)| ≤ Π, ∀i ∈ V, ∀k ≥ 0. (1)

Neighboring agents exchange information about their own state xi(k) ∈ R and
thus cooperate according to a discrete-time local interaction protocol

xi(k + 1) = fi(ui(k), xj(k) : j ∈ Ni). (2)

1 Note that by increasing the sampling frequency of the unknown reference exogenous
signals their relative change in one iteration is reduced, thus for any signal with
bounded relative change there exists a sampling frequency such that Assumption 1
is satisfied.
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The dynamic max-consensus problem consists in steering the agents’ state to the
time-varying value of the maximum value of the exogeneous reference signals

ū(k) = max
i∈V

ui(k), (3)

with bounded relative error

∃ε ≥ 0, k̄ ≥ 0 :
|xi(k)− ū(k)|

ū(k)
≤ ε ∀i ∈ V, ∀k ≥ k̄, (4)

regardless of the initial condition x(0) = [x1, . . . , xn]
T

.
Objective of this paper is to propose a local interaction protocol (2) for

a discrete-time MAS, which solves the dynamic consensus problem formalized
in (3)-(4) under Assumption 1 by abiding the limitations of the unknown network
topology G. Performance and convergence properties of the proposed protocol
are theoretically characterized.

4 Proposed Dynamic Max Consensus
(DMC) protocol

The proposed local interaction protocol executed by each agent to solve the
dynamic consensus problem on the max value is shown next

xi(k + 1) = max
j∈Ni

⋃{i} {α · xj(k), ui(k −mod(k, T ))} , (5)

where α ∈ (0, 1) is a real tuning parameter and function mod(k, T ) denotes
the modulo operation, i.e., it outputs the remainder after the division of the
integer k by T . For sake of clarity, we also detail in Protocol 1 the proposed
Dynamic Max-Consensus (DMC) protocol which makes use of the proposed local
interaction protocol in (5).

Protocol 1 takes as input a tuning parameter α ∈ (0, 1), a time interval T ∈ Z
and an arbitrary initialization of the state variables x0 = [x10, . . . , x1n]T ∈ Rn.
At each iteration all nodes gather the state values of their neighbors and update
their state according to the protocol in (5). The value of the input reference signal
is updated only every T discrete time steps, since the argument k −mod(k, T )
changes value only every T units of discrete time.

5 Convergence properties

In this section we characterize the convergence properties of Protocol 1 for con-
stant (see Theorem 1) and time-varying (see Theorem 2) input reference signals

In the next theorem we characterize the steady state relative estimation
error, i.e., the error relative to the magnitude of the maximum value among
the reference signals to be estimated at the steady state (constant inputs), and
the rise time, i.e, the convergence time of the protocol from an arbitrary initial
condition to the steady state value.
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Theorem 1 (Steady state relative error and rise time). Consider a MAS
executing Protocol 1 with tuning parameter α ∈ (0, 1) and time interval T ∈ N.
If graph G is connected and if there exists a time k? such that mod(k?, T ) = 0
and such that reference signals ui(k) are constant and positive for k ≥ k? and
∀i ∈ V , then given

k̄ = max


logα

ū(k?)

max
i∈V

xi(k
?)

 , 0
+ k? + δ(G), (6)

for any time k ≥ k̄ and any initial condition x(0) ∈ Rn the relative error is
bounded by

e(k) = max
i∈V
|xi(k)− ū(k?)|

ū(k?)
≤ 1− αδ(G), (7)

where δ(G) denotes the diameter of graph G, ū(k?) is defined as in (3) and d·e
is the round up function2.

Proof. By hypothesis, there exists a time k? after which all reference signals
ui(k) are constant and positive. Thus, in the following we omit the dependence
of ui(k) and ū(k) from k and let k ≥ k?.

Consider the worst case scenario,

max
i∈V

xi(k
?) ≥ ū

and
αmax
i∈V

xi(k
?) ≥ ū,

then, according to (5), it holds

max
i∈V

xi(k
? + 1) ≤ αmax

i∈V
xi(k

?),

2 The round up function d·e denotes the operation of rounding the argument to the
first integer greater than or equal to the argument.

Protocol 1: Dynamic Max-Consensus (DMC)

Input : Tuning parameter α ∈ (0, 1);
Time interval T ∈ Z;
Initial estimation xi0 ∈ R for any i ∈ V .

Set : xi(0)← xi0 for any i ∈ V
for k = 0, 1, 2, . . . each node i do

Gather xj(k) from each neighbor j ∈ Ni

Update the current state according to
xi(k + 1) = max

j∈Ni
⋃
{i}
{α · xj(k), ui(k −mod(k, T ))}
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and by induction, for k ≥ k? it holds

max
i∈V

xi(k) ≤ αk−k? max
i∈V

xi(k
?).

Since the maximum among all agents’ state is decreasing, then there exists k1 ≥
k? such that

αk1−k
?

max
i∈V

xi(k
?) ≤ ū.

By simple manipulation it follows that the smallest value of k1 can be computed
by

k1 = max


logα

ū

max
i∈V

xi(k
?)

 , 0
+ k? . (8)

for which it holds
max
i∈V

xi(k1) ≤ ū.

Clearly, if max
i∈V

xi(k
?) ≤ ū, k1 = k?. Now, let V1 = {i ∈ V : ui = ū} denote

the set of agents whose reference signal holds the maximum steady state value
at k = k1. Obviously V1 ⊆ V . By protocol (5), it follows that ∀i ∈ V1, xi(k) = ū
for all k ≥ k1.

Let us now consider the set of one-hop neighbors of nodes in set V1 which
at time k = k1 have state value less than ū and denote it by V2. Formally,
V2 = {i ∈ V : (i, j) ∈ E, j ∈ V1, i /∈ V1}. Thus, for all i ∈ V2, the state update
rule (5) reduces to

xi(k1 + 1) = max{αū, ui},
because all agents i ∈ V2 have a neighbor j ∈ V1 with state value xj = ū. Thus,
it holds

xi(k1 + 1) ∈ (αū, ū) .

By induction, define the set

V`+1 =

i ∈ V : (i, j) ∈ E, j ∈
⋃

s=1,...`

Vs, i /∈
⋃

s=1,...`

Vs

 .

By repeating this simple process up to Vδ(G) ≡ V where δ(G) is the graph
diameter, i.e., the longest shortest path among any pair of nodes in the network,
which exists because graph G is connected, for i ∈ Vδ(G) it holds

xi(k1 + δ(G)) > max{αδ(G)ū, ui} ≥ αδ(G)ū .

Thus, for all k > k1 + δ(G) it holds xi(k) ∈
(
αδ(G)ū, ū

)
∀i ∈ V . Therefore, it

follows

|xi(k)− ū|
ū

≤ 1− αδ(G) ∀k ≥ k̄, ∀x(0) ∈ Rn,

thus completing the proof.
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From the result of Theorem 1 it follows that, according to (7), to minimize the
steady state relative error we need to choose α ≈ 1, α < 1. On the other hand,
α determines the rise time or convergence time to the steady state according
to (6), with smaller values of α giving a smaller rise time (since both argument
and basis of the logarithm are smaller than 1). Thus, the value of α trades-off
convergence time for steady-state relative estimation error.

It follows that a pragmatic design criterion for the choice of α is to first
fix the desired steady-state relative error and then choose the smallest α which
allows to satisfy the error performance constraint to minimize the rise time.

In the case of α = 1 the proposed protocol becomes the standard max-
consensus protocol [14]. This protocol allows to exactly solve the max-consensus
problem in a finite number of steps but with the strong assumption that all initial
state variables are initialized strictly lesser than the maximum reference signal
in the network. Thus, for α = 1, the protocol is not robust to re-initialization
and therefore is not able to track time-varying reference signals and solve the
dynamic max-consensus problem. Our choice of α ≈ 1, α < 1 allows to avoid this
issue, ensuring robustness to re-initialization and ability of tracking the time-
varying max-value among inputs, while preventing to reach exact consensus for
static inputs.

Parameter T of the DMC protocol does not influence the steady-state relative
error, nor it influences the rise time significantly, thus its choice is arbitrary in
this case. On the other hand, the choice of parameter T influences the maximum
tracking error of the DMC protocol, which is characterized in Theorem 2.

Next, we characterize the maximum tracking error in the case of time-varying
input reference signals under Assumption 1.

Theorem 2 (Tracking error with time-varying inputs). Consider a MAS
executing Protocol 1 with tuning parameter α ∈ (0, 1) and T ∈ N. Consider
time-varying input reference signals ui(k) under Assumption 1. If graph G is
connected, and the tuning parameters α and T satisfy

α < 1−Π, T =

⌈
δ(G)

1− logα(1−Π)

⌉
, (9)

then there exists k̄ ∈ Z such that for any time k ≥ k̄ and any initial condition
x(0) ∈ Rn the relative error is bounded by

e(k) = max
i∈V
|xi(k)− ū(k)|

ū(k)
≤ max

{
1

(1−Π)T
− 1, 1− αδ(G)

(1 +Π)T+δ(G)

}
where δ(G) denotes the diameter of graph G and Π is the maximum relative
change of the inputs according to (1).

Proof. Consider any set of inputs u(0) ∈ Rn+ and initial conditions x(0) ∈ Rn at
time k = 0. Define the maximum relative error at a generic time k is

e(k) = max
i∈V
|xi(k)− ū(k)|

ū(k)
. (10)
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Thus, e(0) can be any value in R+. Let us denote x̄ = maxi xi, x = mini xi,
ū = maxi ui, u = mini ui. In each time interval [λT, (λ + 1)T ] with λ ∈ N the
inputs are not updated and then can be considered constant. Two cases may
occur, either

x̄(λT ) > ū((λ− 1)T ), (11)

or
x̄(λT ) ≤ ū((λ− 1)T ). (12)

If (11) holds for λ, then by (5) and Assumption 1 it holds

x̄((λ− 1)T ) =
1

αT
x̄(λT ), (13)

ū(((λ− 2)T ) ≤ 1

(1−Π)T
ū((λ− 1)T ). (14)

Given (11) verified for λ we aim to prove that (11) holds also for (λ− 1), i.e.,

x̄((λ− 1)T ) > ū((λ− 2)T )

Then, we use (13) and impose that is greater than the upperbound on the input
given by (14), i.e.,

x̄(λT ) >
αT

(1−Π)T
ū((λ− 1)T ).

Given α and Π satisfying (9), i.e., α < 1−Π it follows that (11) holds for λ1−1
and, by induction, it holds also for any λ ∈ [0, λ1].

Since (11) and (12) are mutually exclusive, it is straightforward to notice
that there exists λ∗ such that for any λ ∈ [0, λ∗] condition (11) holds true, while
for any λ > λ∗ condition (12) holds true instead.

One can verify that such λ∗ exists also from all examples in Section 6 while
keeping in mind that for each time interval [λT, (λ + 1)T ] the maximum state
must be checked at the end of the interval and the maximum input must be
checked at the beginning of the interval.

Now, consider first the case in which λ ∈ [1, λ∗]. Let us compute the difference
between errors at two consecutive values of λ, say λT and (λ − 1)T . Since by
combining (11) and (13) it follows

x̄(λT ) =
1

αT
x̄((λ+ 1)T ) > ū(λT ), (15)

then the maximum relative error at λT is

e(λT ) = max
i∈V
|xi(λT )− ū(λT )|

ū(λT )

=
x̄(λT )− ū(λT )

ū(λT )

=
x̄(λT )

ū(λT )
− 1
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The maximum relative error at (λ− 1)T is

e((λ− 1)T ) = max
i∈V
|xi((λ− 1)T )− ū((λ− 1)T )|

ū((λ− 1)T )

=
x̄((λ− 1)T )− ū((λ− 1)T )

ū((λ− 1)T )

=
x̄((λ− 1)T )

ū((λ− 1)T )
− 1

=
1

αT
x̄(λT )

ū((λ− 1)T )
− 1

≥
(

1−Π
α

)T
x̄(λT )

ū(λT )
− 1,

where in the last two steps, equations (13) and (14) are used to find the lower-
bound. To ensure e(λT ) < e((λ− 1)T ), we ask that the exact value of e(λT ) is
lesser than the lowerbound of e((λ− 1)), as follows

x̄(λT )

ū(λT )
− 1 <

(
1−Π
α

)T
x̄(λT )

ū(λT )
− 1

x̄(λT )

ū(λT )
<

(
1−Π
α

)T
x̄(λT )

ū(λT )

1 <

(
1−Π
α

)T
1 <

1−Π
α

α < 1−Π.

Therefore, by choosing the tuning parameter α according to (9), it is possible
to ensure that the relative error contracts for each λ ∈ [0, λ∗].

Now, consider the case in which λ > λ∗. In this case we cannot ensure that
at λT the relative error decreases. Thus, we consider a T large enough so that
the system reaches an equilibrium point at λT . The equilibrium point at λT is
characterized in the proof of Theorem 1 and it is such that equation (12) holds
with the equality for λ ≥ λ∗ + 1, i.e.,

x̄(λT ) = ū((λ− 1)T ), (16)

In order to find a lower bound to T we need to find a lower bound to 6. Since
the only free term is the logarithm

logα
ū(λT )

x̄(λT )
,

to find its greatest value we must compute the minimum argument. To do so,
we take the minimum value of ū(λT ) which is (1 − Π)T ū((λ − 1)T ) and the
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λT (λ+ 1)T

ū

(1 − Π)T ū

(1 − Π)2T ū

(1 − Π)T ū

λT λT + δ(G) (λ+ 1)T

αδ(G)ū

(1 + Π)T ū

αδ(G)(1 + Π)2T ū

(1 + Π)2T ū

Fig. 1. Dynamics plot for Theorem 2, with ū being ū = maxi ui((λ− 1)T ). In the left
figure the red curve denotes the maximum among the states while in the right figure it
denotes the minimum. The blue curve always denotes the maximum among all inputs.

maximum value of x̄(λT ) which is ū((λ− 1)T ) accordingly to 16, thus obtaining

R =
ū(λT )

x̄(λT )
=

(1−Π)T ū((λ− 1)T )

ū((λ− 1)T )
= (1−Π)T , (17)

which is constant and does not depend on the initial state x((λ− 1)T ). Now, by
considering the notation in Theorem 1, consider k? = λT and T = k̄−k?. Thus,
by 6 and 17 it follows

T ≥ logα (R) + δ(G)
≥ logα(1−Π)T + δ(G)
≥ T logα(1−Π) + δ(G)

≥ δ(G)
1−logα(1−Π) ,

which is condition (9).

Having chosen T accordingly to (9), consider λ ≥ λ∗ + 1 and let us compute
the difference between errors at two consecutive values of λ, say λT and (λ+1)T .
To this aim, in Figure 1 we give a graphical representation of the behaviour of
ū(k), x̄(k) and x(k). From the figure, one can notice that in the two cases,
when ū is decreasing (figure on the left) and increasing (figure on the right), the
maximum relative error is given respectively at λT and ad λT + δ(G). Thus we
compute the error in the case the input is increasing

e(λT ) = max
i∈V
|xi(λT )− ū(λT )|

ū(λT )

=
ū((λ− 1)T )− (1−Π)T ū((λ− 1)T )

(1−Π)T ū((λ− 1)T )

=
1

(1−Π)T
− 1 , (18)
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and in the case the input is decreasing

e(λT + δ(G)) = max
i∈V
|xi(λT + αδ(G))− ū((λT + αδ(G))|

ū(λT + αδ(G))

=
(1 +Π)Tα

δ(G)

ū(λT )− αδ(G)ū(λT )

(1 +Π)T+δ(G)ū((λ− 1)T )

= 1− αδ(G)

(1−Π)T+δ(G) . (19)

Taking the maximum value between errors in (18) and (19) we obtain an upper-
bound on the relative error for any time step greater than λ∗T , thus proving the
theorem.

6 Numerical simulations

To illustrate the performance of the proposed protocol, simulation results are
given in this section. The system monitoring the inputs is a distributed system
which consists of 6 nodes, with interconnections given by graph in Figure 2, run-
ning the DMC protocol in Protocol 1. The choice of the graph is instrumental to
show simulations in the worst case scenario, a line graph, where the information
takes exactly δ(G) = 5 steps to flow through the graph.

Figure 3 shows evolution of the state variables (in red) when they are ini-
tialized at x(0) = [0, 0.4, 0.8, 1.2, 1.6, 2]T , the inputs are constant at u(k) =
[0, 0.2, 0.4, 0.6, 0.8, 1]T with maximum ū = 1 (in blue) for all k ≥ 0 and the
tuning parameter α is 0.97. With respect to Theorem 1, k∗ = 0 since the inputs
are constant for k ≥ 0, T can be chosen arbitrarily thus we chose T = 0, and
accordingly to (6)

k̄ = dlogα (0.5)e+ δ(G) = 28 .

In fact in Figure 3 one can notice that after k̄ = 28 steps the system reaches a
steady with relative error equal to (7), i.e., ei(k) ≤ 1− αδ(G) = 1.413, as shown
in figure.

Figure 4 shows evolution of the state variables (in red) when they are ini-
tialized at x(0) = [0, 0.4, 0.8, 1.2, 1.6, 2]T , the inputs are time-varying and
initialized at u(0) = [0, 0.2, 0.4, 0.6, 0.8, 1]T (the maximum in blue), the tuning
parameter α is 0.97 and the relative change of the inputs is Π = 9 · 10−3. All
inputs stay constant except for the 6-th component, which is time-varying with

1 2 3 4 5 6

Fig. 2. Graph topology
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Fig. 3. Evolution of a MAS evolving according to (5), with constant input and random
initialization.
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Fig. 4. Evolution of a MAS evolving according to (5), with time-varying input and
initialization to the input.
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Fig. 5. Evolution of a MAS evolving according to (5), with sinusoidal input and ini-
tialization to the input.
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Fig. 6. Evolution of a large MAS evolving according to (5), with random input and
initialization to the input.

respect to the following

u6(k)


u6(0) if k < 48

(1−Π)u6(0) if k < 96

(1 +Π)u6(0) otherwise

. (20)

As in the previous example, one can compute the convergence time which is
k̄ = 28, as it is confirmed by the figure. Since Π < 1 − α, by choosing T
according to (9), i.e., T = 7, Theorem 2 holds true and thus, by substituting for
the tuning parameters considered, there exists a time k̄ such that it holds

max
i∈V
|xi(k)− ū(k)|

ū(k)
≤ 0.2357,

as shown in figure.
Figure 5 shows evolution of the state variables (in red) when they are ini-

tialized at x(0) = [0, 0.4, 0.8, 1.2, 1.6, 2]T , the inputs are time-varying and
initialized at u(0) = [0, 0.2, 0.4, 0.6, 0.8, 1]T (the maximum in blue), the tuning
parameter α is 0.97 and the relative change of the inputs is Π = 64 · 10−4. All
inputs stay constant but the 6-component which is time-varying with respect to
the following

u6(k) = u6(0) + 0.2 sin

(
2kπ

200

)
, (21)

In this case, signals ui(k) are changing since the beginning, thus it makes no
sense to think about computing a step k∗ such that a steady state is reached.
Nevertheless, since Π < 1 − α, by choosing T according to (9), i.e., T = 8,
Theorem 2 holds true and thus there exists a time k̄ such that ∀k ≥ k̄ and
∀i ∈ V it holds

ei(k) ≤ max

{
1

(1−Π)T
− 1, 1− αδ(G)

(1 +Π)T+δ(G)

}
= 0.2046,
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as shown in figure.
Last simulation, shown in Figure 6, a different scenario is considered. The

system monitoring the inputs is a large network of 100 nodes with random inter-
connections having diameter equal to δ(G) = 9. Figure 6 shows the evolution of
the maximum among all inputs (in blue), the maximum and minimum among all
states (in violet, respectively with solid and dotted lines) and finally the average
state (in red). State variables are initialized at x(0) = [0, 0.4, 0.8, 1.2, 1.6, 2]T ,
inputs are randomly time-varying such that

u(k + 1)

u(k)
∈ [(1−Π), (1 +Π)] ∀k ≥ 0

with relative changeΠ = 10·10−3 and initialized at u(0) = [0, 0.2, 0.4, 0.6, 0.8, 1]T ,
while the tuning parameter α is 0.98. As in the previous example, signals ui(k)
are changing since the beginning, thus the system wont reach a steady state and
we check directly that conditions (9) holds true.

For instance, Π < 1 − α is true and T must be chosen equals to 18. By
applying Theorem 2 there exists a time k̄ such that ∀k ≥ k̄ and ∀i ∈ V it holds

ei(k) ≤ max

{
1

(1−Π)T
− 1, 1− αδ(G)

(1 +Π)T+δ(G)

}
= 0.2472,

as shown in figure.

7 Conclusions

We have proposed, and characterized in terms time and error convergence, a dis-
tributed protocol for multi-agent systems to effectively dealing with the problem
of tracking the maximum of a set of positive time-varying input reference sig-
nals. Two strengths of the proposed protocol are the following: 1) the ability to
track the maximum reference signal even it is strictly lower than all states vari-
ables; 2) the robustness to initialization, meaning that the protocol is ensured to
works for any initialization of the state variables. A weakness of this protocol is
that exact consensus is never reached, even with constant reference inputs, thus
avoiding the chance to reach a zero error. In the view of this weakness, we aim to
improve the proposed protocol by means of locally distributed and time-varying
tuning parameters to ensure convergence to a consensus state.
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