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Abstract—This paper provides a computationally tractable
necessary and sufficient condition for the existence of an av-
erage state observer for large-scale linear time-invariant (LTI)
systems. Two design procedures, each with its own significance,
are proposed. When the necessary and sufficient condition is
not satisfied, a methodology is devised to obtain an optimal
asymptotic estimate of the average state. In particular, the
estimation problem is addressed by aggregating the unmeasured
states of the original system and obtaining a projected system
of reduced dimension. This approach reduces the complexity of
the estimation task and yields an observer of dimension one.
Moreover, it turns out that the dimension of the system also does
not affect the upper bound on the estimation error.

Index Terms—Large-scale systems, algebraic/geometric meth-
ods, estimation.

I. INTRODUCTION

STATE estimation for monitoring large-scale systems re-
quires tremendous amounts of computational and sensing

resources, which is impractical in most applications, [1].
However, knowledge of some aggregated quantity of the state
suffices in several applications.

Processes over physical networks such as traffic [2], epi-
demic spread [3] and thermal control [4] are examples of
large-scale systems. Due to the diffusive nature of these
systems, the average state is usually sufficient for monitoring
purposes. For instance, estimating the average traffic density
in some sector of a traffic network helps to monitor the
congestion effectively. In the event of an epidemic, estimating
the average proportion of infected people over several towns,
which are interconnected through people commuting for work
or other purposes, helps to devise the preventive measures for
controlling the epidemic spread. For the temperature regulation
of a building, the thermistors can only be placed either on the
walls or the roof, therefore, estimating the average temperature
of the interior of a large corridor is crucial. Other examples
include the averaging systems such as opinion networks and
wireless sensor networks, [5], where the average state is of
paramount importance.
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Average state estimation in large-scale network systems has
been recently studied in [6], where clustered model reduction
[7] is used to reduce the complexity of the estimation task.
The aim of [6] is to identify the clusters of network nodes
with similar behavior and to estimate the average states of
those clusters. For the estimation, an average state observer is
designed based on the reduced system, which is obtained by
aggregating the clusters. In physical networks, however, the
sensors might be already placed and the clusters already spec-
ified. Consequently, the clustered model reduction techniques
are no more relevant and the estimation task entirely relies on
the observer design.

Observer design for estimating a linear functional of the
state was first presented in [8]. However, the system is assumed
to be observable and the observability index determines the
order of the observer, which can be reduced as shown in
[9]. Later, in [10]–[12], different methodologies are proposed
to obtain a minimum order design of a functional observer.
Nonetheless, the conditions to verify the existence of such
an observer are not computationally feasible for large-scale
systems. This paper, on the other hand, addresses the problem
through a projected system which is obtained by projecting the
dynamics of the original system to a lower dimensional state
space. Such an approach is useful to deal with the complexity
of large-scale systems. In particular, the state is partitioned
into the measured part, which is the output of the system, and
the unmeasured part, whose average we aim to estimate. Note
that this approach can be generalized to estimate any linear
functional of the state instead of the average.

Average observability is a notion introduced in [13], which
studies if it is theoretically possible to reconstruct the average
state trajectory of a system from the output measurements.
This paper, on the other hand, focuses on the design of an
average state observer to obtain an asymptotic estimate of
the average state. A necessary and sufficient condition for
the existence of such an observer is also provided. When
the condition is not satisfied, we provide an observer design
methodology to minimize the asymptotic estimation error.

The proposed observer is based on the parameters of the
projected system. This approach makes the estimation task
‘scale-free,’ dual to what is described in [14], since the
complexity does not scale with the dimension of the original
system. Likewise, it turns out that the upper bound on the
estimation error is also invariant to the dimension.

II. NOTATION

The real and complex numbers are denoted as R and C,
whereas Ra denotes the reals in the interval a ⊂ R and



Ca denotes the complex plane with real axis restricted to
Ra. Matrices are denoted by uppercase letters and vectors by
boldface lowercase letters. A vector of ones and an identity
matrix are denoted as 1n and In, respectively, whereas 0n×m
and 0n denote a matrix and a vector of zeros, respectively,
where subscripts (sometimes omitted for brevity) indicate their
dimensions. For a matrix A ∈ Rn×m, we denote its transpose
and pseudo-inverse by AT and A+, respectively; and, when
n = m, eig(A) denotes the set of its eigenvalues. A diagonal
matrix is written as diag[a1, · · · , an] with elements a1, · · · , an
at its diagonal. The absolute value of a scalar is denoted by
|·| and a generic p-norm for vectors by ||·||. With each vector
norm ||·|| on Rn, we associate a matrix norm |||·||| induced by
||·|| on Rn×n.

III. PROBLEM DEFINITION

Linear time-invariant (LTI) systems of the form

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(Σ)

are considered, where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rm
are the state, input, and output vectors, respectively, and
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n are constant matrices.
To emphasize the scope of the paper and avoid trivial cases,
we suppose that m < n/2 and the pair (C,A) is neither
observable nor detectable.

Without loss of generality, we assume the partition of the
state vector x(t) = [xT1 (t) xT2 (t)]T , where x1(t) ∈ Rk and
x2(t) = y(t) ∈ Rm with n = k + m. Thus, the system
matrices are partitioned as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C =
[

0m×k Im
]

;

(1)

where the dimensions of the matrix blocks are in accordance
with the state partition.

Referring to x1(t) and x2(t) as unmeasured and measured
states, respectively, we aim to estimate the average of the
unmeasured state, i.e. z1(t) = 1

k1Tk x1(t). With the estimate of
z1(t) and the measurements x2(t), one can obtain an estimate
of the average of the whole state x(t).

We obtain a lower-order projected system by aggregating
the unmeasured state x1(t) as

ż(t) = Ez(t) + Fσ(t) +Gu(t)
y(t) = Hz(t)

, (Σ̊)

where the state vector z(t) =
[
z1(t) xT2 (t)

]T ∈ Rm+1 and the
matrices are given as

E =

[
1
k1

TA111
1
k1

TA12

A211 A22

]
, F =

[
1
k1

TA11

A21

]
H =

[
0m Im

]
, G =

[
1
k1

TB1

B2

]
.

(2)

The average deviation vector σ(t) ∈ Rk is given by σ(t) :=(
I − 1

k1k1
T
k

)
x1(t), where we note that

1Tkσ(t) = 0 (3)

for all t ∈ R≥0.
The goal is to devise an observer whose estimate ẑ1(t)

converges to the true value z1(t) asymptotically as t→∞.
This necessarily involves canceling the effect of σ(t) from Σ̊.
Thus the problem considered here is similar to the problem of
observer design for systems with unknown inputs, [15], [16],
where σ(t) is assumed to be completely arbitrary. However,
in our case, σ(t) is not arbitrary but satisfies (3). Hence, it is
quite intuitive that the possibility to cancel the effect of σ(t)
is necessary for the existence of an average state observer.
This consideration directs the study in two directions: 1) Find
a necessary and sufficient condition under which an average
state observer exists. 2) If the average state observer doesn’t
exist, devise a methodology to obtain an optimal estimate ẑ1(t)
as t→∞.

IV. ASYMPTOTIC ESTIMATION OF THE AVERAGE STATE

The following form of the observer is considered

ẇ(t) = Mw(t) +Ky(t) +NGu(t)
ẑ(t) = w(t) + Ly(t)

, (Ω̂)

where w(t), ẑ(t) ∈ Rm+1 are the state and output of Ω̂,
respectively, and M,K,N,L are matrices of appropriate di-
mensions. Let the estimation error be z̃(t) := z(t) − ẑ(t),
which satisfies

˙̃z(t) = M z̃(t) +NFσ(t) , (4)

where
N = I − LH, M = NE −K1H,
K2 = ML, K = K1 +K2.

(5)

If ‖z̃(t)‖ → 0 as t → ∞, then the observer Ω̂ exists and
estimates z(t) asymptotically.

In what follows, we abide by the assumption that the pair
(H,E) is observable, i.e. rankOH,E = m + 1, where H,E
are given in (2) and

OH,E =
[
HT (HE)T · · · (HEm)T

]T
. (6)

Lemma IV.1. The pair (H,E) is observable if and only if
A211k 6= 0m, where H,E are given in (2) and A21 in (1).

The proof of this Lemma is provided in [13]. The condition
A211 6= 0 implies that the average state affects the dynamics
of at least one measured state. This condition is necessary for
the observer Ω̂ to asymptotically estimate the average state
from the output y(t) and the input u(t).

A. Necessary and sufficient condition
We provide a necessary and sufficient condition that is

easy to check computationally since it doesn’t require, unlike
[12], to construct several observability matrices, which is
computationally not feasible for large-scale systems.

Theorem IV.1. Given Σ, consider Σ̊ and Ω̂. Assume that
(H,E) is an observable pair. Then, the estimation error
z̃(t) := z(t) − ẑ(t) converges to 0 as t → ∞ at an arbitrary
rate if and only if

rank

 1Tk
1TkA11

A21

 = rankA21, (7)



where 1TkA11 ∈ R1×k and A21 ∈ Rm×k are given in (2).

Proof: Recall the error dynamics in (4) and the property
(3). Then, since σ(t) ∈ Rk, we note that NFσ(t) = 0 for all
t ∈ R≥0 if and only if NF = v1T for some v ∈ Rm+1, where
F is given in (2) and N in (5). The equation NF = v1T with
NF = (I − LH)F can be written as[

1 −`T1
0m Im − L2

] [
1
k1TA11

A21

]
=

[
v11

T

v21
T

]
, (8)

where L =

[
`T1
L2

]
∈ R(m+1)×m and v =

[
v1
v2

]
∈ Rm+1.

For some arbitrary v, we find L such that (8) is satisfied.
Hence, to satisfy the upper part of (8), we must have

rank
[

1
k1TA11 − v11T

A21

]
= rankA21, (9)

for some v1 ∈ R. The lower part of (8) is satisfied either if
L2 6= Im and

rank
[

1T

A21

]
= rankA21, (10)

or if L2 = Im. We prove the necessity and sufficiency of the
theorem as follows.

Sufficiency: If L2 6= Im, then N = I −LH is such that the
pair (H,NE) is observable (it can be verified by checking the
rank of OH,NE by replacing E with NE in (6)). Therefore,
eig(M) ⊂ C<0 can be assigned arbitrarily by the algorithm
presented in [17]. Thus ‖z̃(t)‖ → 0 as t→∞ at an arbitrary
rate determined by eig(M) ⊂ C<0. To satisfy (8) for L2 6= Im,
the condition (10) must hold. Since (7) implies (9) and (10),
the sufficiency of (7) is proved.

Necessity: If L2 = Im, then N = I − LH is such that
(H,NE) is not an observable pair. However, if we choose
K = [k11 KT

12]T such that kT11 = 1
k1TA12 − `T1 A22 and

K12 = −diag[λ2, · · · , λm+1], then we have

M = diag[λ1(v1), λ2, · · · , λm+1], (11)

where λ1(v1) = 1
k1TA11(I−A+

21A21)1 + v11
TA+

21A211 and
λi ∈ R<0 for i = 2, · · · ,m + 1. For M to be a Hurwitz
matrix, it is necessary that

v1 <
1TA11(A+

21A21 − I)1

k1TA+
21A211

. (12)

Furthermore, to have λ1(v1) ∈ R<0 arbitrary, i.e. ‖z̃(t)‖ → 0
as t→∞ at an arbitrary rate determined by eig(M) ⊂ R<0,
it must hold that (9) is satisfied for all v1 ∈ R satisfying (12).
In other words, the rows of A21 must span the plane formed
by span{1TA11,1

T } excluding the line span{1T }. That is,
for general Σ, (9) must hold for all v1 ∈ R, which proves the
necessity of (7).

B. Design procedures for average state observer

As a consequence of the proof of Theorem IV.1, we develop
two design procedures for Ω̂. The first design provides L such
that the pair (H,NE) is observable, where N = I − LH .
Hence, eig(M) ⊂ C<0 can be arbitrarily assigned by finding
the matrix K1 by the pole-placement algorithm [17]. The

second provides L and K such that M is a diagonal matrix
with entries in R<0.

Proposition IV.2 (Design 1). Let the system Σ be such that
(7) is satisfied. Consider the observer Ω̂ such that

L =

[
1
k1TA11 − v11T
A21 − v21

T

]
A+

21,

K1 = place(NE,H, [λ1, . . . , λm+1]),
(13)

where λi ∈ C<0, for i = 1, · · · ,m + 1, are the desired
eigenvalues of M , “place” is the pole-placement algorithm
provided in [17], v1 ∈ R and v2 ∈ Rm \ {0m} are arbitrary,
and the matrices M,N,K are chosen according to (5). Then,
the estimation error z̃(t) converges to 0 as t → ∞ at a rate
determined by eig(M) = {λ1, · · · , λm+1}.

Proof: Since (7) is satisfied, L in (13) is the solution satis-
fying (8) for some arbitrary values of v1 ∈ R and v2 ∈ Rm,
see [18]. Therefore, NFσ(t) = 0 for all t ∈ R≥0. Moreover,
the pair (H,NE) is observable (refer to the sufficiency part
of the proof of Theorem IV.1). Therefore, K1 obtained by the
pole placement algorithm [17] gives M = NE −K1H with
eig(M) = {λ1, · · · , λm+1}, where λi ∈ C<0.

Proposition IV.3 (Design 2). Let the system Σ be such that
(7) is satisfied. Consider the observer Ω̂ such that

L =

[
`T1
L2

]
=

[ (
1
k1TA11 − v11T

)
A+

21

Im

]
,

K1 =

[
kT11
K12

]
=

[
1
k1TA12 − `T1 A22

−diag[λ2, · · · , λm+1]

]
,

(14)

where λi ∈ R<0, for i = 2, · · · ,m+ 1, and v1 ∈ R such that
(12) is satisfied, and the matrices M,N,K chosen according
to (5). Then, the estimation error z̃(t) converges to 0 as t→∞
at a rate determined by eig(M) = {λ1(v1), · · · , λm+1}, where
M is given in (11) and

λ1(v1) =
1

k
1TA11(I −A+

21A21)1 + v11
TA+

21A211. (15)

Proof: The choice of L is such that NFσ(t) = 0 for all
t ∈ R≥0. Moreover, the choice of matrices in (14) yields a
diagonal M , as in (11), where v1 is chosen such that it satisfies
(12). Therefore, eig(M) ⊂ R<0 are assigned arbitrarily and
‖z̃(t)‖ → 0 as t→∞.

In design 2, the eigenvalues can only be chosen in R<0

and not in C<0. However, this design yields a reduced-order
average observer of dimension equal to 1.

Proposition IV.4 (Reduced-order average observer). Con-
sider the observer Ω̂. Then, the choice of design matrices in
(14) yields a reduced order average observer

ẇ1(t) = λ1(v1)w1(t) + kT11y(t) + gTu(t)

ẑ1(t) = w1(t) + `T1 y(t)
(Ω̂1)

such that z1(t)− ẑ1(t)→ 0 as t→∞, where w1(t) ∈ R, `T1
and k11 given in (14), λ1(v1) given in (15), and

gT =

(
1

k
1TB1 − `T1 B2

)
G

with B1 ∈ Rk×p and B2 ∈ Rm×p given in (1).



Proof: We can obtain Ω̂1 from Ω̂ since all states in Ω̂ under
(14) are decoupled and are stable.

The significance of both design procedures are summarized
as follows. In design 1, eig(M) can be arbitrarily assigned
in C<0, which gives an extra control over the estimation
performance in the transient phase. Design 2, on the other
hand, enables us to obtain a reduced-order average observer
Ω̂1 of dimension equal to 1, which makes the estimation
problem scale-free.

V. APPROXIMATE ESTIMATION OF THE AVERAGE STATE

If a system Σ doesn’t satisfy the necessary and sufficient
condition in Theorem IV.1, the estimation error doesn’t con-
verge to zero. In this section, we devise a methodology to
minimize lim supt→∞ ‖z̃(t)‖.

A. Boundedness of the estimation error

We prove under suitable assumptions that the estimation
error remains bounded, i.e. lim supt→∞ ‖z̃(t)‖ ≤ δ where
0 ≤ δ < ∞ is an upper bound. The result in this subsection
is a gateway to error minimization considered in the next
subsection.

Theorem V.1. Consider Σ, Σ̊, and Ω̂ such that z̃(t) satisfies
(4). Assume one of the following:

(i) eig(A) ⊂ C≤0 and
∫∞
0
‖u(t)‖dt <∞.

(ii) eig(A) ⊂ C<0 and ‖u(t)‖ <∞ for all t ∈ R≥0.
Then, lim supt→∞ ‖z̃(t)‖ is bounded.

Proof: Consider (4), where the error trajectory satisfies
||z̃(t)|| ≤

∣∣∣∣eMtz̃(0)
∣∣∣∣ +

∣∣∣∣∣∣∫ t0 eM(t−τ)NFσ(τ)dτ
∣∣∣∣∣∣. Note that

M can be chosen to be Hurwitz (i.e. all eigenvalues have
negative real parts). Thus, limt→∞

∣∣∣∣∣∣eMt
∣∣∣∣∣∣ = 0 and

lim sup
t→∞

||z̃(t)|| ≤ lim sup
t→∞

∣∣∣∣∣∣∣∣∫ t

0

eM(t−τ)NFσ(τ)

∣∣∣∣∣∣∣∣ dτ
≤ lim sup

t→∞

∫ t

0

∣∣∣∣∣∣eM(t−τ)NFσ(τ)
∣∣∣∣∣∣ dτ

≤ lim sup
t→∞

∫ t

0

∣∣∣∣∣∣∣∣∣eM(t−τ)
∣∣∣∣∣∣∣∣∣||NFσ(τ)|| dτ.

Since the two functions inside the integral are positive by
definition of the norm, it holds (see Section 23 of [19])

lim sup
t→∞

||z̃(t)|| ≤ ||NFσ||∞ lim
t→∞

∫ t

0

∣∣∣∣∣∣∣∣∣eM(t−τ)
∣∣∣∣∣∣∣∣∣ dτ

≤
∣∣∣∣∣∣V −1∣∣∣∣∣∣|||V ||||||NFJ |||

λ∗
||x1||∞, (16)

where J = Ik − 1
k1k1

T
k , λ∗ = minλ∈eig(M) |Re{λ}| > 0,

||x1||∞ = sup{||x1(t)|| : t ∈ R≥0}, and V is the matrix of
eigenvectors in eigenvalue decomposition of M . The inequal-
ity (16) is obtained since

lim
t→∞

∫ t

0

∣∣∣∣∣∣∣∣∣eM(t−τ)
∣∣∣∣∣∣∣∣∣ dτ =

∫ ∞
0

∣∣∣∣∣∣eMτ
∣∣∣∣∣∣ dτ

≤
∣∣∣∣∣∣V −1∣∣∣∣∣∣|||V |||

λ∗
.

Note that, if either of the assumptions (i) and (ii) hold, then
we have ‖x1(t)‖ < ∞ for all t ∈ R≥0, which completes the
proof.

The bound on the error (16) depends on the condition
number of V , which is defined as cond(V ) :=

∣∣∣∣∣∣V −1∣∣∣∣∣∣|||V |||.
An upper bound on the condition number of matrices is widely
studied, see [20], however, to our knowledge, there is no
upper bound on the condition number of eigenvector matrix
V . Therefore, in general, to minimize |||NFJ ||| by a suitable
choice of N doesn’t ensure the minimization of the bound (16)
in the case of design 1 (Proposition IV.2). However, in design 2
(Proposition IV.3), the matrix M is diagonal, therefore V = I
and cond(V ) = 1.

B. Minimization of the asymptotic estimation error

We devise a methodology based on design 2 (Proposi-
tion IV.3) to obtain an optimal average state estimate as
t→∞. Since M is diagonal, (16) is given by

lim sup
t→∞

‖z̃(t)‖ ≤ |||N(v1)FJ |||
λ∗

||x1||∞. (17)

The eigenvalues λ2, · · · , λm+1 of M can be chosen freely,
therefore we assume that λ∗ = |λ1(v1)|, where λ1(v1) is given
in (15).

Proposition V.2. Consider Ω̂ with design (14). Assume the
conditions of Theorem V.1 hold such that (17) is bounded.
Then, the bound (17) is minimized by v1 ∈ R, which is the
solution to

min
v1∈R

∣∣∣∣v1pT − qT
∣∣∣∣

|v1α− β|

subject to v1α− β < 0 ,

(18)

where pT = 1T (A+
21A21 − I), qT = 1

k1TA11(A+
21A21 − I),

α = pT1+k, β = qT1, and λ∗ = |αv1−β|. Here, we assume
that α 6= 0 and β 6= 0.

Proof: Consider (17). If (7) doesn’t hold, then |||NFJ ||| 6= 0,
where F , N , and J are given in (2), (5), and (16), respectively.
Note that NFJ = 0 if and only if NF = v1T since rankJ =
k − 1, where v = [v1 vT2 ]T ∈ Rm+1. Thus minimizing
|||NFJ ||| is equivalent to minimizing

∣∣∣∣∣∣NF − v1T
∣∣∣∣∣∣, where

v ∈ Rm+1 is a free parameter and

NF − v1T =

[
1
k1TA11 − `T1 A21 − v11T
(Im − L2)A21 − v21

T

]
.

For a given v, the solution to this minimization problem is
given by the method of least squares of the corresponding
linear equations, see [18], which gives an analytic solution
of L in terms of v as given in (13). However, notice that
v2 = 0m is necessary for a minimizing solution, which gives
a matrix L as given in (14) in terms of v1 ∈ R. Therefore,
if λ∗ = |αv1 − β|, the bound on the steady state estimation
error (16) is minimized by minimizing the following

min
L(v1)

|||NFJ |||
λ∗

= min
v1

∣∣∣∣( 1
k1TA11 − v11T )(I −A+

21A21)
∣∣∣∣

|αv1 − β|
,

where α, β are given in (18).
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Fig. 1: Graph structures for simulation examples

The optimization problem (18) can be solved by an appro-
priate optimization technique. However, if the norm function
in (18) is chosen to be differentiable, one obtains an analytic
solution for optimal v∗1 .

Corollary V.2.1. Consider the minimization problem (18) with
a Euclidean norm, then the optimal solution is given by

v∗1 =


αqTq− βpTq

βpTp− αpTq
, if

α2

β2
<

pTp

qTq
,

β2pTp− αβpTq

α2pTq− αβpTp
, otherwise;

(19)

where α, β,p,q are given in (18). Here, we assume that
βpTp 6= αpTq or αpTq 6= βpTp.

Remark V.1. The error bound (17) doesn’t increase with
the dimension of the system. To illustrate, note that ||x1||∞
depends on the system dynamics and NF =

[
rT

0m×k

]
,

where rT = 1
k1TA11(I − A+

21A21) + v11
TA+

21A21. Then,
λ1 = rT1, from (15), and we have, from (17),

|||NFJ |||
|λ1|

=

∣∣∣∣rTJ∣∣∣∣
|rT1|

≤ ||r||
|rT1|

+
1√
k
.

If r is either nonnegative or nonpositive element-wise, then
||r||
|rT1|

≤ 1 since |rT1| = ||r||1.

VI. SIMULATION EXAMPLES

In this section, we present examples to illustrate the design
procedures provided in the preceding sections. For large-scale
systems, we represent the state matrix A by a graph, where
the nodes represent the states of the system and the edges
represent the positive off-diagonal entries of A.

Example VI.1. A linear compartmental system [21] with a
structure as shown in Fig. 1(a) is considered, where blue
nodes represent the unmeasured states and grey nodes the
measured states. The state at each node i satisfies ẋi(t) =∑n
j=1 aijxj(t) −

∑n
h=1 ahixi(t), where aij = [A]ij with

[A]ij = 1 if there is edge (i, j), for i 6= j, and 0 otherwise.
By constructing the matrix A, it can be verified that (7) is
satisfied. We generate x(0) uniformly random in Rn(−2,2) with
n = 11. The output matrix C = [03×8 I3] and the input
matrix B = CT with u(t) = 10[sin t sin 10t sin 20t]T .

2 4 6 8 10

1

Time t

Actual average z1(t)

Estimate ẑ1(t) by design 1

Estimate ẑ1(t) by design 2

Fig. 2: Average state estimation for Example 1.

Fig. 2 shows the average state estimation by the two design
procedures presented in this paper. Note that the state of the
observer Ω̂ is initialized at zero for both designs. The figure,
however, shows the first component of the observer’s output,
which depends on the value of v1 that is different for both
designs. Therefore, we have different initial estimates.

Design 1. Choose v1 = 1 and v2 = 1. Compute L by (13).
The desired eig(M) = {−0.75,−1,−2,−3}, for which we
obtain by pole-placement

K1 =


3.3199 2.0276 3.0276

4.4858 1.2582 2.2582

2.4849 2.6321 2.8821

2.4849 1.8821 3.6321

 ,

where N = I − LH and K = K1 +K2 with K2 = ML.
Design 2. Choose v2 = 0 and v1 = −0.0938 such that

λ1(v1) = αv1 − β = −0.75, where α, β are given in (18).
Choose {λ2, λ3, λ4} = {−1,−2,−3}. Then, the matrices L
and K1 are computed by (14) and M , N , and K by (5). Obtain
Ω̂1 with λ1 = −0.75 and `T1 = [−0.0312, 0.2187,−0.0312].

Remark VI.1. For a network system to satisfy (7), it is
necessary that every unmeasured node is connected to at least
one measured (or output) node as shown in Fig. 1(a). Thus
this condition in general requires a large number of measured
nodes, which is not feasible due to limited number of available
sensors. The purpose of the next example is to show that
even if (7) doesn’t hold, we obtain a satisfactory average state
estimate under the conditions of Theorem V.1.

Example VI.2. Consider a reaction-diffusion system over a
grid network shown in Fig.1(b). The state at each node satisfies
ẋi(t) = −rixi(t) +

∑n
j=1 aij [xj(t) − xi(t)], where ri = 0.2

is the reaction rate and aij = aji is the diffusion rate, [7].
The term aij = 1 if the nodes i and j are connected and 0
otherwise, and the output matrix C = [04×96 I4]. The inputs
are such that u1(t) = sin(0.05t) applied at nodes 97 and 98,
u2(t) = sin(t) applied at nodes 99 and 100, and u3(t) = 0.01
applied at the remaining boundary nodes of the grid (Fig.1(b)).
We obtain Ω̂1 by finding v∗1 = −0.0011 by (19), and λ1(v∗1) =
−0.0178. For a nonoptimal case, we choose a faster eigenvalue
λ1 = −0.5 which gives v1 = −0.0614.

With faster eigenvalue, we obtain faster convergence in
the transient phase, however, the asymptotic estimation error
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Fig. 3: Average state estimation for Example 2.
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Fig. 4: Estimation error for Example 2.

is larger. The optimal v∗1 gives slower convergence in the
transient phase, however, the asymptotic estimation error is
smaller, as shown in Fig. 3 and Fig. 4. This example, therefore,
illustrates the minimization setup (18) and the solution (19)
that minimizes asymptotic value of the estimation error.

Finally, we observe that even though only 8 unmeasured
nodes out of 96 are connected to the measured nodes, which
signals a huge distance from the necessary and sufficient con-
dition (7), we are still able to obtain a satisfactory asymptotic
estimate of the average state as shown in Fig. 3. This might
be the case due to the symmetric structure of the grid, which
may have rendered the average deviation vector to have smaller
values. However, to present a detailed analysis on this type of
behavior is beyond the scope of this paper and is postponed
for the future work.

VII. CONCLUSIONS

We provided a necessary and sufficient condition for the
existence of an average state observer and devised two design
procedures. Design 1 provides more control over the transient
behavior of the observer and design 2 yields an average state
observer of dimension one. When the necessary and sufficient
condition is not satisfied, an error minimization methodology
is devised based on the proposed design procedures. The
complexity of the estimation problem and the upper bound
on the asymptotic estimation error are shown to not increase
with the scale of the system.

The future prospects of this work include an extension to the
estimation of averages of multiple clusters or zones in large
physical networks. Moreover, estimating nonlinear functionals
of the state is also under consideration. For instance, the norm
of average deviation vector provides a spread of states around

average, which may find applications in output regulation of
systems.
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