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Introduction

State Estimation

Σ :

{
ẋ = Ax +Bu

y = Cx

x ∈ Rn, y ∈ Rm

n� m

Problem

When and how can one asymptotically estimate the whole state x?

Main issues:

Sometimes estimating the whole state of a system is impossible.

If possible, the estimation problem is computationally expensive.
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Introduction

Average State Estimation

Σ :



[
ẋu

ẋm

]
=

[
A11 A12

A21 A22

][
xu

xm

]
+

[
B1

B2

]
u

y =
[
0m×k Im

] [xu

xm

]

Problem

When and how can one asymptotically estimate the average state xave = 1
k1Txu?

. measured states xm ∈ Rm

. unmeasured states xu ∈ Rk
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Introduction

Motivational Example: Monitoring Urban Traffic
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Introduction

Our approach

z = Px

Projection

[
xave(t)
xm(t)

]
︸ ︷︷ ︸

z

=

 1
k1T

k 0
0 Im

︸ ︷︷ ︸
P

xu(t)
xm(t)

︸ ︷︷ ︸
x

Σ :

{
ẋ = Ax +Bu

y = Cx

Projection

σ = xu − 1xave

Ω :


ż = A′z +B′u + Fσ

y = C ′z

0 = 1Tσ

Estimate of z is equivalent to average estimation of x
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Introduction

Main contributions

Ω :


ż = A′z +B′u + Fσ

y = C ′z

0 = 1Tσ

A′=

 1
k1TA111

1
k1TA12

A211 A22

, B′=

 1
k1TB11
A2

, F=

 1
k1TA111
A21

, C′=
[
0m Im

]

Our Problem

When and how can one asymptotically estimate the state z regardless of the unknown
input σ?

When: We provide a necessary and sufficient condition for the existence of an
observer Ω̂ for the system Ω

How: We provide two different observer designs
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Exact Estimation

Necessary and sufficient condition

Theorem 1

Consider a system Σ, its lower order projection Ω and an observer Ω̂ in the following form

Ω̂ =

{
ẇ = Mw +Ky +NGu

ẑ = w + Ly
, w ∈ Rm+1 .

It is possible to design M,K,N,L such that the estimation error e(t) := z(t)− ẑ(t)
converges to 0 as t→∞ at an arbitrary rate if and only if

rank

 1T

1TA11

A21

 = rank
[
A21

]
. (1)
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Exact Estimation

Proof Sketch

Having chosen

N = I − LC ′, M = NA′ −K1C
′ , (2)

K = K1 +K2, K2 = ML ,

the error of the observer and its dynamics can be written as

e(t) = ẑ(t)− z(t) , (3)

ė(t) = ˙̂z(t)− ż(t) = Me(t) +NFσ(t) . (4)

To ensure global asymptotical stability of e(t), one has to show:

1 NFσ(t) = 0 for all t.

2 λ ∈ eig(M) are such that <{λ} < 0

To ensure ‖e(t)‖ → 0 as t→∞ at an ‘arbitrary’ rate, one has to show, in
addition to 1 and 2 above, that eig(M) can be assigned arbitrarily.
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Exact Estimation

Design Procedures

Design 1

Design the observer Ω̂ such that

L =

[
1
k1TA11 − v11T

A21 − v21
T

]
A+

21,

K1 = place(NA′, C ′, [λ1, . . . , λm+1]),
(5)

where λi ∈ C<0, for i = 1, · · · ,m+ 1, are the desired eigenvalues of M , “place”
is the classic pole-placement algorithm1, v1 ∈ R and v2 ∈ Rm \ {0m} are arbitrary
and

N = I − LC ′, M = NA′ −K1C
′ ,

K = K1 +K2, K2 = ML .

1Kautsky et al., Robust pole assignment in linear state feedback (1985)
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Exact Estimation

Design Procedures

Design 2

Design the observer Ω̂ such that

L =

[
( 1
k
1TA11 − v11T )A+

21

Im

]
,

K1 =

[
1
k
1TA12 − `T1 A22

−diag[λ2, · · · , λm+1]

]
,

v1 =
λ1− 1

k
1TA11(I−A+

21A21)1

1TA+
21A211

,

(6)

where λi ∈ R<0, for i = 1, · · · ,m+ 1 are the desired eigenvalues of M and

N = I − LC′, M = NA′ −K1C
′ ,

K = K1 +K2, K2 = ML .

With this design M is diagonal, therefore it yields a reduced-order observer of
dimension equal to 1.
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Approximate Estimation

Bounded Error

Theorem 2

Consider a system Σ, its lower order projection Ω and an observer Ω̂ in the following form

Ω̂ =

{
ẇ(t) = Mw(t) +Ky(t) +NGu(t)

ẑ(t) = w(t) + Ly(t)
, w ∈ Rm+1 .

It is possible to design M,K,N,L such that the estimation error e(t) := z(t)− ẑ(t) is
bounded as t→∞ if one of the following holds

1 eig(A) ⊂ C≤0 and
∫∞
0
‖u(t)‖dt <∞.

2 eig(A) ⊂ C<0 and ‖u(t)‖ <∞ for all t ∈ R≥0.
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Approximate Estimation

Proof Sketch

ẑ(t)− z(t) = e(t) = eMte(0) +

∫ t

0

eM(t−τ)NFσ(τ) dτ.

lim
t→∞

||e(t)|| ≤ lim
t→∞

∣∣∣∣∣∣∣∣∫ t

0

eM(t−τ)NFσ(τ)

∣∣∣∣∣∣∣∣ dτ
≤ lim

t→∞

∫ t

0

∣∣∣∣∣∣eM(t−τ)NFσ(τ)
∣∣∣∣∣∣ dτ

≤ lim
t→∞

∫ t

0

∣∣∣∣∣∣∣∣∣eM(t−τ)
∣∣∣∣∣∣∣∣∣||NFσ(τ)|| dτ.

≤
[

max
t≥0
||NFσ(t)||

] [
lim
t→∞

∫ t

0

∣∣∣∣∣∣∣∣∣eM(t−τ)
∣∣∣∣∣∣∣∣∣ dτ]

≤
∣∣∣∣∣∣V −1

∣∣∣∣∣∣|||V ||| |||N(λ∗)FJ |||
λ∗

max
t≥0
||xu(t)||,

λ∗ = minλ∈eig(M) |Re{λ}| > 0
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Examples

Compartmental System

1 2

3 4

5 6

7 8

9

10

11

Figure: Example 1


aii = −

∑
h=1,h6=i ahi

aij = 1 if there is edge (j, i)

aij = 0 otherwise

B = CT , u(t) = 10[sin t sin 10t sin 20t]T .

A21 =

1 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 1


1TA11 = −

[
1 1 1 1 1 1 1 1

]
eig(M) = {−0.75,−1,−2,−3}
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Examples

Exact Estimation

1 2

3 4

5 6

7 8

9

10

11

Figure: Example 1

2 4 6 8 10

−1

1

2

Time t

Actual average z1(t)

Estimate ẑ1(t) by design 1

Estimate ẑ1(t) by design 2

Figure: Average state estimation for Example 1.
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Examples

Reaction-Diffusion System

99

97 98

100

Figure: Example 2


aii = −ri = −0.2

aij = 1 if there is edge (j, i)

aij = 0 otherwise

u1(t) = sin(0.05t) applied at nodes 97 and 98;

u2(t) = sin(t) applied at nodes 99 and 100;

u3(t) = 0.01 applied at the remaining boundary
nodes of the grid

Design 1: eig(M) = {−0.5,−1,−2,−3,−4}

Design 2: eig(M) = {−0.0237,−1,−2,−3,−4}
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Examples

Approximate Estimation
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Figure: Example 2 200 400 600
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Estimate ẑ1(t) by design 1

Estimate ẑ1(t) by design 2
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Estimate ẑ1(t) by design 1

Estimate ẑ1(t) by design 2

Figure: Average state estimation for Example 2.
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Conclusions

Conclusions and future perspectives

Conclusions

A necessary and sufficient condition for the existence of an average state
observer is provided

Two designs for the observer are provided

Design 2 yields an observer of dimension 1 with minimum error

Complexity and error do not scale with the system.

Ongoing work

Extension to multiple clusters
Niazi, Canudas-de-Wit, Kibangou, Average state estimation in large-scale clustered network systems”,

TCNS 2019.

Clustering algorithms for average estimation
Niazi, Cheng, Canudas-de-Wit, Scherpen, ”Structure-based clustering for model reduction of

large-scale networks”, CDC 2019.

Future work

Estimation of nonlinear functional such as variance of states (useful in
monitoring consensus in sensor networks).
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Conclusions

Thank you for your attention

Questions?

email:
diego.deplano@unica.it

This work was supported in part by the European Research Council
through the European Union’s Horizon 2020 Research and Inno-
vation Programme (Scale-FreeBack) under Grant ERC-AdG no.
694209.
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