
Date of publication xxxx 00, 0000, date of current version January 08, 2020.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Discrete Event Formulation for
Multi-Robot Collision Avoidance on
Pre-planned Trajectories
DIEGO DEPLANO 1, MAURO FRANCESCHELLI 1, (Member, IEEE), SIMON WARE,
SU RONG 2, (Senior, IEEE), AND ALESSANDRO GIUA 1, (Fellow, IEEE)
1Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy (e-mail: {diego.deplano, mauro.franceschelli, giua}@unica.it)
2School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (e-mail: {sware, rsu}@ntu.edu.sg)

Corresponding author: M. Franceschelli (e-mail: mauro.franceschelli@unica.it).

This work was supported in part by Region Sardinia (RAS) with project MOSIMA, RASSR05871, FSC 2014-2020, Annualita’ 2017, Area
Tematica 3, Linea d’Azione 3.1.

ABSTRACT In this paper we consider the problem of collision avoidance among robots that follow pre-
planned trajectories in a structured environment while minimizing the maximum traveling time among them.
More precisely, we consider a discrete event formulation of this problem. Robots are modeled by automata,
the environment is partitioned into a square grid where cells represent free space, obstacles and walls, which
are modeled as shared resources among robots. The main contribution of this paper is twofold. First, we
propose a problem formulation based on mixed integer linear programming to compute an optimal schedule
for the pre-planned trajectories. Second, we propose a heuristic method to compute a sub-optimal schedule:
the computational complexity of this approach is shown to be polynomial with the number of robots and the
dimension of the environment. Finally, simulations are provided to validate performance and scalability of
the proposed approach.

INDEX TERMS Discrete Event Systems; Heuristic Solution; MILP Problem; Multi-Robot Path-Planning;
Optimal Solution; Optimization; Scheduling.

I. INTRODUCTION

MULTI-ROBOT Path Planning (MRPP) is a fundamen-
tal problem in robotics, whose objective is to move

all agents to their respective goal through the same environ-
ment while taking into account safety constraints, such as
collisions avoidance [1]–[4], and performance constraints,
related to the travelling time [5]–[7]. The focus of this work
is on centralized MRPP problems where the environment is
discretized and the objective is to minimize the maximum
traveling time among the robots. As this problem is PSPACE-
complete [8] it is generally solved by heuristic approaches
giving not optimal solutions. A solution assigns a trajectory
to each robot, i.e., a set of movements and a time schedule.
Thus, the non optimality of a solution may depend on the
robots’ movements and on the associated time schedule.

We address the problem of improving a given solution
by computing new time schedules for the trajectories, which
reduce the maximum traveling time among the robots while
not changing the robots’ movements and avoiding collisions.
Given a solution computed from an external path planner,

we provide two approaches to compute an improved time
schedule. The first approach is optimal with an high com-
putational complexity; the second approach is heuristic with
a polynomial complexity. A preliminary version of such
a heuristic method was introduced in [9], while here the
method is formalized and a proof is provided. To evaluate
the proposed optimal and heuristic approaches, we use as
reference path planner the algorithm we proposed in [10].

The main contributions of this paper are: (i) a Mixed
Integer Linear Programming (MILP) problem formulation
and (ii) a heuristic approach to minimize the maximum
traveling time among robots; (iii) a characterization of the
complexity of the proposed heuristic; (iv) numerical results
which show the effectiveness of the proposed approaches.

After a brief review of related works in Section II, we
present in Section III all relevant and necessary preliminaries
to our discrete event formulation of the MRPP problem [9].
In Section IV the main problem under consideration is stated.
In Sections V-VI we propose, respectively, a MILP formula-
tion and a heuristic algorithm, whose complexity is discussed

VOLUME 8, 2020 1

D. Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

in Section VII. Finally, after the presentation of numerical
results in Section VIII, we give concluding remarks in Sec-
tion IX.

II. RELATED WORKS
In the current literature, a wide variety of MRPP problem
formulations are proposed under different working assump-
tions and by means of different mathematical tools. For
background and theory on motion planning we refer the
reader to [11] and to [12], [13] for comprehensive reviews.

The focus of this paper is on centralized approaches, which
can be divided into three classes: (i) translating the MRPP
problem to other problems that are well studied in computer
science; (ii) heuristic solvers; (iii) optimal solvers. In the
following, we include a brief review of heuristic solvers
belonging to the search-based and rule-based families of
solvers having similar formulations as ours, to which the
approaches proposed in this work can be possibly applied.

A notable example of search-based solvers is the Hier-
atchical Cooperative A∗ (HCA∗) [14]. Such solvers reduce
the problem complexity by computing, for each robot, in-
dependent paths [15] [16] which are then coordinated to
avoid all possible collisions. However, they cannot guarantee
finding a solution in all cases [17], except under certain
conditions [18], and cannot guarantee an optimal solution.

Graph-based MRPP problem formulations and corre-
sponding rule-based MRPP solver [6], [19]–[22] can be
traced back to [23]. As highlighted in [24] and more recently
in [25], such solvers are guaranteed to return a feasible
solution if there is one and have polynomial time complexity.
In this formulation, the robots are confined to an arbitrary
connected graph, where nodes model the partitioning of the
environment and edges the allowed movements, and colli-
sions arise if two robots move to the same vertex or along
the same edge. In two of the most recent and relevant works
[6], [25], it is shown that the problem of minimizing the

makespan is NP-hard and several heuristics are introduced.
The main difference between these works and the one

presented here is that they allow cyclic rotations of robots
along fully occupied cycles since a robot can enter a position
while another one is leaving it.

III. PRELIMINARIES
Event sequences and languages are a simple mean to describe
the behaviour of a discrete event system. Their basic building
blocks are events σ, which belong to an alphabet Σ.

A string is a sequence of events s = σ1 · · ·σm. The set of
all strings of events in Σ is denoted Σ∗: this set also includes
the empty string ε. A language is a set of strings L ⊆ Σ∗.
The concatenation of two strings s, t ∈ Σ∗ is written as st.

A substring s′ of s is a string contained in s. Further,
s[p : q] denotes the substring of s = σ1 · · ·σm having σp ∈ s
as the first event and σq ∈ s as the last event. A superstring
s of s′ is a string which contains s′. We denote the set of
substrings of s as sub(s) and the set of superstrings of s as
sup(s). Prefixes and suffixes are special cases of substring.

A prefix p of a string s is a substring of s that occurs at
the beginning of s, while a suffix q of a string s is a substring
that occurs at the end of s. We denote the set of prefixes of s
as pre(s) and the set of superstrings of s as suf(s). It holds
that pre(s) ⊂ sub(s) and suf(s) ⊂ sub(s).

System behaviors are modelled using automata. A finite-
state automaton is a 5-tuple G = (X,Σ, δ, x0, Xm) where
X is a finite set of states, Σ is a finite alphabet of events,
δ : X×Σ→ X is the (partial) transition function, x0 ∈ X is
the initial state, and Xm ⊆ X is the set of marked (or final)
states. The transition function is extended to strings in Σ∗ by
letting, for all x ∈ X , δ(x, ε) = x and, for all s ∈ Σ∗ and
σ ∈ Σ, δ(x, sσ) = δ(δ(x, s), σ). Furthermore, given a string
s ∈ Σ∗, δ(x, s)! means that there exists a state y such that
δ(x, s) = y, i.e., δ(x, s) is defined.

The language generated by an automaton G, or the closed
behaviour ofG, isL(G) = {s ∈ Σ∗|δ(xo, s)!}. The language
accepted by an automaton G, or the marked behaviour of G,
is is Lm(G) = {s ∈ Σ∗|δ(xo, s) ∈ Xm}.

IV. DISCRETE EVENT PROBLEM FORMULATION
We consider a set of n mobile robots positioned in a planar
environment. The environment where the robots operate is
partitioned into a square grid, each square cell is denoted
as a position. As shown in Figure 1, accessible positions
are denoted by white squares while inaccessible positions
are denoted by black squares. Each accessible position is
labeled with pi with i = 1, . . . , Np, where Np denotes
the total number of accessible positions in the environment.
A wall between two adjacent positions is represented by a
thick line. Two adjacent positions are connected if there is
no wall between them and are disconnected otherwise. The
movement of a robot between two accessible and connected
position is said to be a feasible transition. A robot can move
only between connected and accessible positions.

Each robot is an automatonGg = (Xg,Σg, δg, x0,g, Xm,g),
defined as follows.
• Xg is the set of states: a state xg,i belongs to this set if

position pi can be visited by robot rg .
• Σg is the alphabet: an event σ = (g, pi, pj) belongs to

this set if there exists an available transition of robot g
from position pi to position pj .

• δg : Xg × Σg → Xg is the transition function: for all
available transitions σ = (g, pi, pj) we define xg,j =
δ(xg,i, σ).

• xg,0 is the initial state of robot g corresponding to a
generic initial position.

• Xg,m is the set of final states of robot g corresponding
to generic final positions.

The overall system can be completely described by the
3-tuple (G, f,R), which we call System of Time-weighted
Automata with Resources (STAR). First we introduce the
concept of resource.

Definition 1 (Standard Set of Resources) Consider
a set of n robots described by automata Gg =

2 VOLUME 8, 2020

D.Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

(Xg,Σg, δg, x0,g, Xm,g) for g ∈ {1, . . . , n} and let Σ =⋃n
g=1 Σg be set of all events across all robots.
A resource is a set of events r ⊆ Σg which can not occur

simultaneously.
The standard set of resources R of G = G1 × · · · × Gn

contains:
• A resource Rg for each robot rg with g = 1, . . . , n such

that all events of Σg are in that resource;
• A resource Pi for each position pi with i ∈ 1, . . . , Np

such that all events (across all robots) which involve the
position pi are in that resource. �

Definition 2 (System of Time-weighted Automata with
Resources) A System of Time-weighted Automata with Re-
sources (STAR) is a 3-tuple G = (G, f,R), in which
• G = G1 × G2 × . . . × Gn = (X,Σ, δ, x0, Xm)

denotes the finite-state automaton obtained by parallel
composition of n automata, each one describing a single
robot;

• f : Σ 7→ R+ is a weight function which assigns to each
event σ ∈ Σ a positive real number f(σ) which denotes
the time required to execute that event;

• R denotes the standard set of resources, as in Defini-
tion 1. �

We now give an example of two robots in an environment,
their automata and their STAR.

Example 1 In Figure 1 it is shown an environment where
the initial and final positions of robots r1 and r2 are denoted,
respectively, as I1, I2 and F1, F2. On the sides, the automata
G1 and G2 corresponding to robots 1 and 2 are depicted. We
now show how to construct the corresponding STAR G =
(G, f,R):
• G = (X,Σ, δ, x0, xm) = G1 × G2 is the parallel

composition of the automata where the single final state
xm ∈ Xm is the cartesian product to the single final
states of automata G1 and G2.

• f is a function which assigns a weight to all events
σ ∈ Σ corresponding to the time required by the robot
to execute the movement. In this example robots always
require exactly one time unit to move between two
squares, thus it holds f(σ) = 1, ∀σ ∈ Σ.

• R is a set of resources defined as follows. Each robot rg
is modeled as a resource Rg such that for each feasible
transition of the robot, its corresponding event is in

x1

x3

x5

x2 x4

(1,p
1
,p

3
) (1,p

3
,p

1
)

(1,p
3
,p

2
) (1,p

4
,p

3
)

(1,p
2
,p

3
) (1,p

3
,p

4
)

(1,p
3
,p

5
) (1,p

5
,p

3
)

I1

I2

F2 F1

p1

p3

p5

p2 p4

x1

x3

x5

x2 x4

(2,p
1
,p

3
) (2,p

3
,p

1
)

(2,p
3
,p

2
) (2,p

4
,p

3
)

(2,p
2
,p

3
) (2,p

3
,p

4
)

(2,p
3
,p

5
) (2,p

5
,p

3
)

Figure 1: Translation of MRPP problem in a DES context: on the left
a sample of environment and on the right an automaton representing
a robot with start and goal position.

that resource. Each position pj is also modeled as a
resource Pj such that for each feasible transition (across
all robots) which involves position pj , its corresponding
event is in that resource. In this example, the set of
resources isR = {R1, R2, P1, P2, P3, P4, P5} where

R1 = {(1, p3, p1), (1, p3, p2), (1, p3, p4), (1, p3, p5),
(1, p1, p3), (1, p2, p3), (1, p4, p3), (1, p5, p3)} ;

R2 = {(2, p3, p1), (2, p3, p2), (2, p3, p4), (2, p3, p5),
(2, p1, p3), (2, p2, p3), (2, p4, p3), (2, p5, p3)} ;

P1 = {(1, p1, p3), (1, p3, p1), (2, p1, p3), (2, p3, p1)};
P2 = {(1, p2, p3), (1, p3, p2), (2, p2, p3), (2, p3, p2)};
P3 = {(1, p3, p1), (1, p3, p2), (1, p3, p4), (1, p3, p5),

(1, p1, p3), (1, p2, p3), (1, p4, p3), (1, p5, p3),
(2, p3, p1), (2, p3, p2), (2, p3, p4), (2, p3, p5),
(2, p1, p3), (2, p2, p3), (2, p4, p3), (2, p5, p3)} ;

P4 = {(1, p4, p3), (1, p3, p4), (2, p4, p3), (2, p3, p4)};
P5 = {(1, p5, p3), (1, p3, p5), (2, p5, p3), (2, p3, p5)} .

�

Given a STAR G = (G, f,R), a string s ∈ Lm(G) denotes
a sequence of movements which leads the robots from their
initial position to their final position.

Definition 3 (Projection) Let G = (G, f,R) be a STAR and
s = σ1, . . . , σm ∈ Lm(G) be a string.

The projection πr(s) of string s over r ∈ R is a new string
where events not belonging to resource r are removed. �

Thus, πRg
(s) denotes the sequence of movements of

robot g. Events in a string are executed depending on their
order. The main problem addressed by this paper is to de-
termine a schedule for the events in s (allowing events to be
executed at the same time) such that robots do not collide.

Definition 4 (Schedule) Let G = (G, f,R) be a STAR and
s = σ1, . . . , σm ∈ Lm(G) be a string.

A schedule of s for G is an ascending ordered list of
nonnegative real numbers ρ = [t1, . . . , tm] ⊂ Rm≥0, with tk
establishing the start of the execution of the event σk. We
denote P(s) the set of schedules of s.

A schedule is a sequential schedule if for all k = 1, . . . ,m
it holds that t1 = 0 and tk+1 = tk + f(σk). �

Thus, when a schedule ρ = [t1, . . . , tm] is associated to a
string s = σ1 · · ·σm, each event σk ∈ s, for k = 1, . . . ,m,
has a starting time tk, an event execution time f(σk) and
a completion time tk + f(σk). The events are executed
following the order in the string s but their execution can be
overlapped in time. The sequential schedule represents the
classic way to execute events in a discrete event system, i.e.,
no two events are executed simultaneously. In this context,
the sequential schedule implies that each robot moves while
the others are standing. In this work we deal with strings for
which the sequential schedule does not give a collision, i.e.,
no two robots occupy the same poisition a the same time. We
call them valid strings, as follow.

Definition 5 (Valid String) Let G = (G, f,R) be a STAR
with G = G1 × · · ·Gn being the concurrent composition of
n robots and x0 = (x1,0, · · · , xn,0) be the initial states.

VOLUME 8, 2020 3

D. Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

The string s ∈ L(G) is a valid string if for all prefixes ŝ of
s, and for all couples g, h ∈ {1, . . . , n}, it holds that

δg(xg,0, πRg
(ŝ)) 6= δh(xh,0, πRh

(ŝ)). (1)

i.e., no two robots occupy the same position after the firing
of any prefix of s. The set of all valid strings of G is denoted
V(G) ⊂ L(G). �

Given a valid string, for all other schedules which are
not the sequential one, one wants to characterize the ones
which do not give rise to collision. We call them collision-
free schedules.

Definition 6 (Collision-Free Schedule) Let G = (G, f,R)
be a STAR, s ∈ V(G) a valid string, ρ ∈ P(s) a schedule of
s.

The schedule ρ is a collision-free schedule if and only if
for all q, v ∈ {1, . . . , n}, q < v and σq, σv ∈ r ∈ R it holds
that tq + f(σq) ≤ tv . The set of collision-free schedules of s
is denoted Pcf (s). �

For any valid string there exist infinitely many collision-
free schedules: first, there exists at least one, which is the
sequential one; second, delaying the firing time of all events
in the sequential schedule by the same quantity results in
a new valid schedule. When a collision-free schedule is
associated with a string, we can define the makespan of a
string, which is the time needed to execute all events in the
string with respect to the given schedule.

Definition 7 (Makespan) Let G = (G, f,R) be a STAR,
s = σ1, . . . , σm ∈ V(G) a valid string, ρ = [t1, . . . , tm] ∈
Pcf (s) a collision-free schedule of s.

The makespan of a string s given a schedule ρ is the largest
completion time among all events in the string

τρ(s) = max
k=1,...,m

tk + f(σk).

If s = ε, i.e., the empty string, we let τρ(ε) = 0. �

Finally, it is of interest defining the best collision-free
schedule with respect to the resulting makespan of a given
string. The smallest makespan among all possible collision-
free schedules is called strict makespan.

Definition 8 (Strict Makespan) Let G = (G, f,R) be a
time-weighted automaton, let s ∈ Lm(G) be a string.

The strict makespan of the string s is

υ(s) = min
ρ∈Pcf (s)

τρ(s).

If s = ε, i.e., the empty string, we let υ(ε) = 0. �

Given robots’ trajectories sg ∈ V(Gg), there can exists
several strings s ∈ V(G) that give trajectories sg , i.e.,
πRg

(s) = sg for all g ∈ {1, . . . , n}. We thus define the
trajectory invariant set of a string.

Definition 9 (Trajectory Invariant Set) Let G = (G, f,R)
be a STAR and s ∈ V(G) a valid string.

The trajectory invariant set of the string s is defined as
S(s) = {s′ ∈ Σ∗|πRg

(s′) = πRg
(s), ∀g = 1, . . . , n}. �

Given a STAR G = (G, f,R), we point out that two
valid strings s1, s2 ∈ V(G) such that s2 ∈ S(s1), can have
different strict makespans since the events in a string can be
fired only following their order in the string (see Example 2).
Because of this fact, given a valid string s1, we address the
problem of computing a new valid string s2 obtained by
shuffling events of s1 while preserving robots’ trajectories,
i.e., s2 ∈ S(s1), such that s2 has the lowest strict makespan
among all strings in S(s1). In other words, the trajectory
of each robot g is fixed as πRg

(s1), but the order of events
of different robots are adjustable via shuffling, aiming for a
minimum strict makespan while avoiding collisions.

Problem 1 (Optimal String) Let G = (G, f,R) be a STAR
and let s = σ1 · · ·σm ∈ V(G) ⊂ Lm(G) be a valid string.

Compute among all valid strings in S(s), the one whose
strict makespan is minimum, i.e.,

s∗ = arg min
s′∈V(G)∩S(s)

υ(s′).

V. OPTIMAL SOLUTION
To solve Problem 1, given a valid string s, one can directly
compute the earliest time each event in s can be fired and
then construct the new valid string based on this schedule.
This consideration translates the problem into Problem 2.

Problem 2 (Optimal Schedule) Let G = (G, f,R) be a
STAR, let s = σ1 · · ·σm ∈ V(G) ⊂ Lm(G) be a valid string
and let sg = πRg

(s) = σ1
gσ

2
g · · ·σ

mg
g , for all g = 1, . . . , n.

Compute schedules ρg = [t1g, t
2
g · · · t

mg
g] for all robots g =

1, . . . , n such that, defined
(i) A schedule ρ̄ by sorting elements of ρg for g = 1, . . . , n

in ascending order;
(ii) A string s̄ by sorting elements of sg for g = 1, . . . , n

with respect to ρ̄,
it holds that

1) The string s̄ is a valid string, i.e., s̄ ∈ V(G);
2) The makespan τρ̄(s̄) of s̄ given ρ̄ is equal to the lowest

stric makespan among all the valid shufflings of s, i.e.,

τρ̄(s̄) ≡ min
s′∈V(G)∩S(s)

υ(s′).

�

Proposition 1 Solutions to Problem 1 and Problem 2 are
equivalent.

Proof. In Problem 1 the solution is a string s∗ while in Prob-
lem 2 the solution is a set of schedules ρg for g = 1, . . . , n.
They are equivalent in the sense that the string s̄, obtained as
explained in Problem 2, has the same optimal makespan as
the string s∗, i.e., υ(s̄) ≡ υ(s∗).

An optimal solution to Problem 2 (and consequently to
Problem 1 by Proposition 1) can be computed by the MILP
Model in Proposition 2. Note that the constraints considered

4 VOLUME 8, 2020

D.Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

in equation (2) are defined in following, within the proof of
the proposition..

Proposition 2 (MILP Model) Let (G, f,R) be a STAR, s =
σ1 · · ·σm ∈ V(G) be a valid string and let us denote the
projection of s on robot g as sg = πRg (s) = σ1

gσ
2
g · · ·σ

mg
g ,

for all g = 1, . . . , n. Consistently, for each event σkg in the
string s we define a variable tkg which refers to its firing time.
The following MILP

minimize max
σk
g∈s
{tkg + f(σkg)}

subject to Positivity constraints (3)

Robot constraints (4) (2)
Position constraints (5.1, 5.2, 5.3)

allows to compute schedules ρg = [t1g, t
2
g · · · t

mg
g] which

are solution to Problem 2. �

Proof. We will go through a detailed explanation of all the
constraints and the objective function, with the aim of show-
ing that constraints set (2) defines the set of collision free
schedules for the considered problem and that the objective
function is optimized by the optimal schedule.

Objective function: The objective function of (2) is the
makespan of the string infered from the firings time, consis-
tently to contidion 2) of Problem 2.

Positivity constraints: We consider the first moment a
robot starts moving as t = 0, then all starting times are
in R≥0. Thus, we have the following set of constraints
∀g ∈ [1, n], k ∈ [1,mg]

tkg ≥ 0 . (3)

Robot constraints: Events belonging to the same robot must
be executed subsequently with respect to their order in
s. Thus, we have the following set of constraints ∀g ∈
[1, n], k ∈ [1,mg − 1]

tkg + f(σkg) ≤ tk+1
g , (4)

i.e., event σk+1
g has to start after the completion of event σkg .

Position constraints: Each position occupied by a robot can
be the initial, final or intermediate. For each category, we
define a set of constraints.
• Initial: Each robot has to leave its initial position before

all other robots enter it. This means that the first event
of each robot must be executed (and terminated) before
all events of other robots which involve that position.
Thus, call P gi the resource of initial position of robot
g, we have the following set of constraints ∀g ∈ [1, n],
∀σkj ∈ s such that σ ∈ P gi

t1g + f(σ1
g) ≤ tkj , (5.1)

• Final: Each robot has to enter its final position after
all other robots leave it. This means that the last event
of each robot must be executed before all events of
other robots which involve that position. Thus, call P gf
the resource of final position of robot g, we have the

following set of constraints ∀g ∈ [1, n], ∀σkj ∈ s such
that σ ∈ P gf

tkj + f(σkj) ≤ tmg
g , (5.2)

• Intermediate: For each position through which two
robots pass, it has to be required either that the first
enter it after the second leave it or vice versa. This has
to be required for each couple of robots that access the
same intermediate position. Witouth loss of generality,
let us suppose that robots g, h share position a position
and that thei enter it with event σig, σ

i
h and leave it

with event σog , σ
o
h. Thus, it has to be required that either

event σig starts after the completion of event σoh, i.e.,
toh + f(σoh) ≤ tig , or event σih starts after the completion
of event σog , i.e., tog + f(σog) ≤ tih.
To express the XOR-condition − whose operand is ⊕ −
between our literals X1 = [toh + f(σoh)− tig ≤ 0], X2 =
[tog + f(σog) − tih ≤ 0] by linear constraints we refer to
[26]. Let δ1, δ2 be two logical variables associated to

literals X1, X2, i.e., X1 ⇔ [δ1 = 1] and X2 ⇔ [δ2 =
1]. Therefore, require X1 ⊕X2 is equivalent to require

X1 ⇔ [δ1 = 1]

X2 ⇔ [δ2 = 1]

δ1 + δ2 = 1

Consider the literals are of the type X = [f(x) ≤ 0],
where f(x) : Rn → R is a linear function, and assume
that x ∈ X with X a given bounded set and define
U = maxx∈X f(x), L = minx∈X f(x) and ε is a small
tolerance, e.g. the machine precision. Thus,

[f(x) ≤ 0]⇔ [δ = 1]⇐⇒
{
f(x) ≤ U(1− δ)
f(x) ≥ ε+ (L− ε)δ

In our case we have f1 = toh + f(σoh) − tig , f2 =
tog + f(σog) − tih, U = |s| + 1 and L = −|s| + 1.
Furthermore, we name δ1 = δh,g and δ2 = δl,kh,g .
Thus, we have the following set of constraints for each
position and each couple of robots g, h ∈ [1, n] passing
through that position

toh + f(σoh)− tig ≤ U(1− δh,g)
toh + f(σoh)− tig ≥ ε+ (L− ε)δh,g
tog + f(σog)− tih ≤ U(1− δl,kh,g)
tog + f(σog)− tih ≥ ε+ (L− ε)δl,kh,g
δh,g + δl,kh,g = 1

. (5.3)

Constant values: Whenever U,L appear, they take the fol-
lowing values: U = |s|+ 1 and L = −|s|+ 1.

Number of variables: There are m = |s| firing variables,
one for each event σ in the string s and also a certain amount
of logical variables. An upper bound can be computed by
supposing that all robots share the same path but not initial
and final position, for a total of n(n−1)

2 couples.. Suppose
that all robots substrings has m/n events, i.e., m/n − 1

VOLUME 8, 2020 5

D. Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

Algorithm 1: HeuristicShuffle(s, f,R, N)

Input : A valid string s = σ1 . . . σm ∈ V (G),
a transition weight function f : Σ 7→ R,
a set of resourcesR ⊆ 2Σ

an integer number N ∈ N.
Output: A valid string s′

Set : s′ ← CompressTrace (s,R, f)
H ← ResMapR(s)
S ← ∅

1 for q ← 2 to m do
2 s̄← πRg (s′[1 : q]) // σq ∈ Rg
3 if |s̄| ≥ N then
4 ŝ← last N events in s̄
5 q̂ ← max{First(H, ŝ), Last(H, ŝ)}
6 if MiddleR(H, s, ŝ, q̂) then
7 S ← S ∪ {(ŝ, q̂)}

8 for (ŝ, q̂) ∈ S do
9 s∗ ← string s where ŝ is shifted after σq̂

10 s∗ ← CompressTrace (s∗,R, f)
11 if υ(s∗) < υ(s′) then
12 s′ ← s∗

13 return s′

intermediate positions, amounting to n(n−1)
2 · (m/n − 2) =

m·n
2 −m

2 −n2+n ≈ m·n logical variables. Thus, the number
of unknowns in the MILP 2 is O(m · n).

Number of constraints: In the same scenario of above,
position constraints clearly outnumbers the others and so that
intermediate positions. Thus, the number of constraints is
O(m · n).

VI. HEURISTIC SOLUTION
On the other hand, to solve Problem 1 one can compute all
the strings which can be obtained by shuffling events in s,
compute their minimal schedule and finally select the one
with the smallest strict makespan. This approach would be
much more complex because of its combinatorial nature. The
main idea underlying the proposed heuristic approach, given
in Algorithm 1, is to shuffle events in the string s in a smart
way, selecting only shuffles which result in a new valid string.

A previous approach called CompressTrace [27] - used
in our algorithm - operates an optimal rearrangement without
swapping two events involving the same resource, i.e., if
s′ = CompressTrace(s) for each resource r ∈ R it holds
that πr(s) = πr(s

′). Our algorithm relaxes this constraint for
resources associated to positions. Thus, it allows πPj (s) 6=
πPj (s′) for a generic position pj with j = 1, . . . , Np and
associated resource Pj . This relaxation allows robots having
a common path to change their priority of access to it, which
is the intrinsic idea of the proposed approach.

p2

I2

p1 p3

p5p4 p6

p8p7 p9

I1

F2F1

Figure 2: Swap example: I1, I2 and F1, F2 are respectively the initial
and final positions of robots 1 and 2.

A. GENERAL IDEA
Given a valid string s, Algorithm 1 allows to identify all
subsequences ŝ containing N events which can be shifted
backwards in position q̂ while resulting in a new valid string.
This is done at lines 1 − 7. A subsequence which can be
possibly shifted backward in the string is called a dense
subsequence.

Definition 10 (Dense subsequence) Let (G, f,R) be a
STAR, s = σ1 · · ·σm ∈ V(G) and s ∈ V (G) be a valid
string.

A dense subsequence of s is any substring ŝ of πRg (s),
where Rg is the resource of robot rg . �

After identifying all subsequence-index couples, Algo-
rithm 1 performs all the shifts and, if there is, returns the
one with the smallest strict makespan. This is done at lines
8 − 12. In order to better understand which kind of couples
subsequence-index the algorithm is able to find and how a
shuffle can effectively improve a string, an example is given.

Example 2 Referring to Figure 2 a valid string can be
s = σ1σ2σ3σ4σ5σ6σ7σ8 = (1, 1, 2)(1, 2, 5)(1, 5, 4)(2, 3,
2)(2, 2, 5)(2, 5, 8)(2, 8, 9)(2, 9, 6). The strict makespan of
the string s is υ(s) = 7 considering all event weights equal
to 1. In this example robots r1 and r2 pass through positions
2 and 5. In the string s robot 1 has priority of access to
it because its events precede those of robots r2. Chosen
N = 3, Algorithm 1 is able to find that the subsequence
ŝ = σ4σ5σ6 = (2, 3, 2)(2, 2, 5)(2, 5, 8) can be moved in
position q̂ = 1. The resulting string is s′ = (2, 3, 2)(2,
2, 5)(2, 5, 8)(1, 1, 2)(1, 2, 5)(1, 5, 4)(2, 8, 9)(2, 9, 6) and is a
valid string. This shift means that now robot 2 has prior-
ity of access to the intersection. Thus, CompressTrace
computes a new reordering at line 10 and the final string
is s′ = (2, 3, 2)(2, 2, 5)(1, 1, 2)(2, 5, 8)(1, 2, 5)(2, 8, 9)(1, 5,
4)(2, 9, 6) with strict makespan υ(s′) = 5 which is less than
υ(s) = 7. �

B. CORRECTNESS OF THE APPROACH
In the following we first state and prove conditions for a
dense subsequence to be shifted in a specific position and
then prove that Algorithm 1 outputs a valid string based on
these conditions.

6 VOLUME 8, 2020

D.Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

Proposition 3 (Shift of a dense subsequence within a
string) Let G = (G, f,R) be a STAR, let x0 =
(x1,0, · · · , xn,0) be the initial state of all robots, let s =
σ1 . . . σm ∈ V(G) be a valid string, let ŝ = σp . . . σq be a
dense subsequence of s of robot g, let q̂ be an index such that
q̂ < p. Define
• si = s[1 : q̂ − 1],
• s̄ = s[q̂ : m] \ ŝ,

such that the string obtained by the shift is s′ = siŝs̄. Three
conditions are defined:

(1) there exists an event σ ∈ s̄ such that σ ∈ Rg .
(2a) there is a robot h such that δh(xh,0, πRh

(si)) =
δg(xg,0, πRg (siŝ[1 : l])) for one l ∈ [1, |πRg (ŝ)|].

(2b) there is a robot h such that δh(xh,0, πRh
(sis̄[1, l])) =

δg(xg,0, πRg
(siŝ)) for one l ∈ [1, |πRh

(s̄)|]
Let be s′ the string obtained by the shift, then we have the

following statement
(i) The dense subsequence ŝ can be shifted in position q̂

within string s, getting s′ ∈ V (G), if and only if (1),
(2a), (2b) are false. �

Proof. Condition (1) is equivalent to a shift which implies
a shuffle of events belonging to the same robot. In this case,
the resulting string does not belong to L(G). Thus s′ ∈ L(G)
if and only if (1) is false. By definition, si is a valid string.
String siŝ is a valid string if and only if (2a) is false. String
ŝs̄ is a valid string if and only if (2b) is true. Thus, siŝs̄ =
s′ ∈ V (G) if and only if s′ ∈ L(G) and (2a) and (2b) are
false. Therefore, s′ ∈ V (G) if and only if (1), (2a) and (2b)
are false.

Algorithm 1 computes subsequence-index couples by
means of functions First, MiddleR and Last which are
defined next.

Let s ∈ V (G) be a valid string, R a standard set of
resources, and ŝ = σp . . . σq a dense subsequence of s. For
the sake of simplicity, the next functions are defined with
respect to an event with an arbitrary index σk = (gk, p

i
k, p

f
k).

ResMapR(s) = Hm×|R|,

where each element hab = a if σa ∈ {Rb∪Pb−n} and hab =
0 otherwise.

First(H, ŝ) = max{hab|a < p, b = gp} ∪ {0}.
Last(H, ŝ) = max{hab|a /∈ Ig ∨ a < q, b = pfq +n} ∪ {0},
where Ig = {p, . . . , q}.
MiddleR(H, s, ŝ, q̂) = true if q∗ = 0 and false otherwise,

where q∗ = max{hab|σa ∈ s∗, b − n ∈ Ii} and Ii =
{pip, . . . , piq} and s∗ = {t[1 : 1]|t = πRg

(s[q̂ + 1 : q] \
ŝ),∀Rg ∈ R}.
Theroem 1 (Algorithm 1 outputs a valid string) Let
(G, f,R) be a STAR, s = σ1 · · ·σm ∈ V(G) a valid string
and let s′ = HeuristicShuffle(s, f,R, N).

Then s′ ∈ V (G).

Proof. Given a dense subsequence ŝ = σp · · ·σq of the string
s, Algorithm 1 selects an index q̂ by using functions First
andLast at line 5 and then validates it by functionMiddleR.
It is necessary to ensure that such indexes are feasible, in the
sense that the new string obtained by shifting back ŝ after σq̂
results in a valid string. By Proposition 3 we know that if a
couple (ŝ, q̂) satisfies conditions (1), (2a) and (2b), then the
new string it is a valid string. We point out that:
• Given q̂ = First(H, ŝ) and s̄ = s[q̂ : q] \ ŝ, then

condition (1) of Proposition 3 is false.
• Given q̂ = Last(H, ŝ) and s̄ = s[q̂ : q] \ ŝ, then

condition (2b) of Proposition 3 is false.
• Given q̂ = 1, . . . ,m, v = MiddleR(H, s, ŝ, q̂) and s̄ =
s[q̂ : q] \ ŝ, then condition (2b) of Proposition 3 is false
if and only if v = true.

Therefore, if a couple (ŝ, q̂) is added at line 7, it is
sure that satisfies conditions (1), (2a) and (2b) and then
s′ = HeuristicShuffle(s, f,R, N) is a valid string, i.e.
shifting ŝ in position q̂ + 1 leads to a valid string.

Example 3 Given the valid string s = σ1σ2σ3σ4σ5σ6σ7σ8 =
(2, 2, 3)(1, 8, 9)(1, 9, 6)(1, 6, 5)(1, 5, 4)(2, 3, 6)(1, 4, 1)(2, 6,
9), let ŝ = σ6σ8 = (2, 3, 6)(2, 6, 9) be a subsequence of s.
First we compute matrix H with function ResMapR(s): "

H =

R1 R2 P1 P2 P3 P4 P5 P6 P7 P8 P9

σ1 0 1 0 1 1 0 0 0 0 0 0
σ2 2 0 0 0 0 0 0 0 0 2 2
σ3 3 0 0 0 0 0 0 3 0 0 3
σ4 4 0 0 0 0 0 4 4 0 0 0
σ5 5 0 0 0 0 5 5 0 0 0 0
σ6 0 6 0 0 6 0 0 6 0 0 0
σ7 7 0 7 0 0 7 0 0 0 0 0
σ8 0 8 0 0 0 0 0 8 0 0 8

We now compute function First(H, ŝ) which selects all
entries hab of H such that a < p = 6 and b = gp = 2
(because ŝ = σp · · ·σq = σ6σ8), giving the set {0, 1}, then it
returns the maximum value 1. This means that subsequence ŝ
can not be moved before event σ1. We now compute function
Last(H, ŝ) which selects all entries hab of H such that
a /∈ Ig = {6, 8}, a < 8 and b = fq + n = 9 + 2 = 11 giving
the set {0, 2, 3}, then it returns the maximum value 3. This
means that subsequence ŝ can not be moved before event σ3.
We select the maximum value q̂ = 3 between the two values
returned by First and Last. Now we must evaluate q̂ with
function MiddleR(H, s, ŝ, q̂). First it computes s∗ = {σ4}
and Ii = {3, 6}, then S takes all entries hab of H such
that σa ∈ s∗ (in this case a = 4) and b − n ∈ Ii giving
q∗ = max{0, 4} = 4, then it returns false because q∗ 6= 0.
This means that ŝ can not be shifted. �

VII. COMPLEXITY ANALYSIS
In this section the complexity of Algorithm 1 is analyzed.

The first for-loop is executed m times, where m is to-
tal number of robots’ movements. We approximate each
robots’ journey with the maximum shortest distance between
any two positions in the environment, which, considering a

VOLUME 8, 2020 7

D. Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

square grid without obstacles with side length
√
Np, leads

to m ≈ n
√

2Np. The projection operated at line 2 requires
q iterations, while the slicing operated at line 4 requires N
iterations. At line 5 the maximum between two values is
taken, which has constant time complexity, while the two
called functions First and Last have both O(m) complex-
ity. Then, at line 6, the if-condition calls function Middle
whose complexity is O(m · n). Since all these operations
are executed serially, the overall loop complexity is equal
to O(m · n) since q ≤ m and N ≤ m. Second for-
loop is executed m times because in the worst case tests
at lines 6 and 9 succeed and exactly m tuples are added in
S. The most complex operation is CompressTrace whose
complexity is O(m · (n + Np)), see [27]. The overall loop
complexity is equal to O(m2 · (n + Np)) ≈ O(m2 · Np).
The slowest for-loop is the second because Np � n, i.e.,
O(m2 ·Np) ≈ O(n2Np). Finally, considering the number of
robots n be upper-bounded by the number of positions Np,
the time complexity of Algorithm 1 is O(N3

p).
As mentioned in Section II, most of rule-based algorithms

to solve MRPP problems do not have optimality guarantees
but their solution can be provided in O(N3

p) time, bound
given by [23], equal to the time complexity of the proposed
approach.

VIII. SIMULATION RESULTS
In order to test the effectiveness of the presented algorithm
we generated random MRPP problems in three different en-

Figure 3: Open Corridor

Figure 4: Closed Corridor

Figure 5: Extensible Grid Environment

vironment: Cyclic Corridor, Closed Corridor, and Extensible
Grid depicted in Figures 3, 4 and 5.

To generate a random problem instance with n robots we
selected a random start and goal position amongst all the
possible free positions in the environment, such that no two
robot share the same start position, nor do they share the same
goal position.

It is possible for a robot to have its start position as its goal
position and another robot’s start position as its goal position.
Velocity of robots is constant but two robots may have differ-
ent velocities. In particular, time required two move between
two cell may vary between 1 second and 2 seconds, i.e., one
robot can move at most twice as fast as another robot. For
each setup (number of robots and environment) 50 different
problems were generated and a solution to them is computed
by [10]. For each problem to which a solution was found:

1) We solve Problem 2 with a MILP problem formulation
in Proposition 2. When the complexity of the problem
becomes computationally intractable, we exploit a lower
bound for the optimal solution by choosing the maxi-
mum traveling time among all robots.

2) We applied Algorithm 1 to find a sub-optimal solution
to Problem 1 and evaluated the distance to the optimal
solution or to the lower bound for large problems.

Average results of these simulations are depicted in Fig-
ures 6-7, where the x-axis represents the number of robots
being coordinated and y-axis represents the average ratio of
the execution time compared to our lower bound (or optimal
solution when available).

Furthermore, we analyzed the time required by the optimal
and sub-optimal approach (see Figure 8) by fixing the ratio

0 2 4 6 8 10

102

103

R

M
a
k
e
sp
a
n

Grid 5× 5

Original

Algorithm 1

Optimal

Lower Bound

10 20 30 40

Robots

Grid 11× 11

0 20 40 60 80

R

Grid 15× 15

Figure 6: Simulation results for the exensible grid environment

0 20 40
102

103

104

Robots

M
a
k
e
sp
a
n

Original

Algorithm 1

Optimal

Lower Bound

(a) Open Corridor

0 10 20
102

103

104

Robots

M
a
k
e
sp
a
n

Original

Algorithm 1

Optimal

Lower Bound

(b) Closed Corridor

Figure 7: Simulation results for the corridor environments

8 VOLUME 8, 2020

D.Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

between number of positions and robots at 20% and enlarging
the size of the grid environment up to 11× 11.

IX. CONCLUSIONS
Optimal and heuristic approaches to minimize the makespan
of pre-planned robot’s trajectories are proposed and proved to
be guaranteed to return a feasible solution if there is one. The
improvement is achieved through the computation of new
time schedules by addressing the collision avoidance prob-
lem in a discrete event formulation [10] [9] of the MRPP
problem, which makes use of time-weighted automata.

The heuristic algorithm was tested on a variety of problems
and it was shown, both theoretically and by simulations,
that its use always leads to a lower makespan, when it is
possible, getting very close to the optimal value. When the
optimal solution was not available, due to the complexity of
the problem, we compared heuristic solutions to a specific
lower bound. Such an heuristic approach does not require a
significant amount of time with respect to the time required
to compute an optimal or sub-otpimal solution.

The speed of the proposed heuristic strategy leads us to
regard potential its use in a dynamic context, which would be
a future prosecution of this work.

References
[1] J. van den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-

body collision avoidance,” in Robotics Research, ser. Springer Tracts in
Advanced Robotics, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds.
Springer Berlin Heidelberg, 2011, vol. 70, pp. 3–19.

[2] H. Yu, P. Shi, C.-C. Lim, and D. Wang, “Formation control for multi-
robot systems with collision avoidance,” International Journal of Control,
vol. 92, no. 10, pp. 2223–2234, 2019.

[3] C. Wang, W. Liu, and M. Q.-H. Meng, “Obstacle avoidance for quadrotor
using improved method based on optical flow,” in IEEE International
Conference on Information and Automation, 2015, pp. 1674–1679.

[4] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in pedestrian-
rich environments with deep reinforcement learning,” arXiv preprint
arXiv:1910.11689, 2019.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, pp. 100–107, 1968.

10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

Size [number of positions]

T
im

e
[s
ec
on

d
s]

Algorithm 1

Optimal

Figure 8: Chart showing average time required to compute an
optimal solution through MILP in Proposition 2 and a sub-optimal
through Algorithm 1 vs size of the environment whit a congestion
equal to to 20%. We considered a failure when comptuing the
optimal solution took more than 5 minutes: it happened when we
tried to coordinate more than 10 robots.

[6] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[7] P. MacAlpine, E. Price, and P. Stone, “Scram: Scalable collision-avoiding
role assignment with minimal-makespan for formational positioning,” in
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[8] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects; pspace- hardness of the "ware-
houseman’s problem",” The International Journal of Robotics Research,
vol. 3, pp. 76–88, 1984.

[9] D. Deplano, S. Ware, R. Su, and A. Giua, “A heuristic algorithm to
optimize execution time of multi-robot path,” in 13th IEEE International
Conference on Control Automation, July 2017, pp. 909–914.

[10] S. Ware and R. Su, “Incremental scheduling of discrete event systems,” in
2016 13th International Workshop on Discrete Event Systems, May 2016,
pp. 147–152.

[11] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[12] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-

robot coordination,” International Journal of Advanced Robotic Systems,
vol. 10, no. 12, p. 399, 2013.

[13] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[14] D. Silver, “Cooperative pathfinding.” AIIDE, vol. 1, pp. 117–122, 2005.
[15] J. H. Oh, J. H. Park, and J. T. Lim, “Centralized decoupled path planning

algorithm for multiple robots using the temporary goal configurations,”
in 2011 Third International Conference on Computational Intelligence,
Modelling Simulation, 2011, pp. 206–209.

[16] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning
via incremental sequential convex programming,” in IEEE International
Conference on Robotics and Automation, 2015, pp. 5954–5961.

[17] G. Sanchez and J. C. Latombe, “Using a prm planner to compare central-
ized and decoupled planning for multi-robot systems,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, 2002, pp. 2112–
2119.

[18] M. Cap, P. Novak, A. Kleiner, and M. Selecky, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Transactions on Automation Science and Engineering, vol. 12, pp. 835–
849, 2015.

[19] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path plan-
ning,” Journal of Artificial Intelligence Research, vol. 31, pp. 497–542,
2008.

[20] P. Surynek, “A novel approach to path planning for multiple robots in
bi-connected graphs,” in IEEE International Conference on Robotics and
Automation, 2009, pp. 3613–3619.

[21] R. J. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

[22] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate: a com-
plete multi-agent pathfinding algorithm,” Journal of Artificial Intelligence
Research, vol. 51, pp. 443–492, 2014.

[23] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications,” in 25th
Annual Symposium on Foundations of Computer Science, 1984., 1984.

[24] G. Röger and M. Helmert, “Non-optimal multi-agent pathfinding is solved
(since 1984),” in Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[25] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Efficient
feasibility tests and planning algorithms,” in Algorithmic foundations of
robotics XI. Springer, 2015, pp. 729–746.

[26] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407 – 427,
1999.

[27] S. Ware and R. Su, “An application of incremental scheduling to a cluster
photolithography tool,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 1114 –
1120, 2017, 20th IFAC World Congress.

VOLUME 8, 2020 9

D. Deplano et al.: A Discrete Event Formulation for Multi-Robot Collision Avoidance on Pre-planned Trajectories

DIEGO DEPLANO received the B.S. and M.S.
degrees in Electronic Engineering “cum laude”
from the University of Cagliari, Italy, respectively
in 2015 and 2017. He spent visiting periods at the
Nanyang Technological University (NTU), Sin-
gapore, at the Centre National de la Recherche
Scientifique (CNRS), Grenoble, France, and at the
University of Toronto (UofT), Toronto, Canada.
He is currently pursuing a Ph.D. degree in Elec-
tronic Engineering and Computer Science at the

Department of Electrical and Electronic Engineering, University of Cagliari,
Italy. His research interests include nonlinear multi-agent systems, positive
systems, consensus problems and mobile robotics.

MAURO FRANCESCHELLI (M’11) is Senior
Assistant Professor (RTD-B) at the Department of
Electrical and Electronic Engineering, University
of Cagliari, Italy, since 2019. He received the Lau-
rea degree in Electronic Engineering “cum laude”
in 2007 and the PhD degree in 2011 from the
University of Cagliari. He spent visiting periods
at the Georgia Institute of Technology (GaTech),
and the University of California at Santa Barbara
(UCSB), USA. In 2013 he received a fellowship

from the National Natural Science Foundation of China (NSFC), Grant No.
61450110086, at Xidian University, Xi’an, China. In 2015 he was awarded
a position of Assistant Professor (RTD-A) funded by the Italian Ministry of
Education, University and Research (MIUR) under the 2014 call “Scientific
Independence of Young Researchers” (SIR) with project “CoNetDomeSys”,
code RBSI14OF6H. He is member of the Conference Editorial Board (CEB)
for the IEEE Control Systems Society (CSS) since 2019. He serves as
Associate Editor for the IEEE Conference on Automation Science and Engi-
neering (CASE) since 2015, the IEEE American Control Conference (ACC)
since 2019 and IEEE Conference on Decision and Control since 2020. His
research interests include consensus problems, gossip algorithms, multi-
agent systems, multi-robot systems, distributed optimization and electric
demand side management.

SIMON WARE received his bachelors of com-
puting and mathematical sciences with honours,
as well as his PhD at the University of Waikato
in 2008 and 2014 respectively. The majority of
his research work has been focused on model ver-
ification, supervisory control, and optimization.
This was primarily pursued as a research fellow
at Nanyang Technological University from 2014
to 2018. He is currently working on allocation
problems as a data scientist at Grab Holdings Inc.

RONG SU (M’11-SM’14) obtained the Bachelor
of Engineering degree from University of Science
and Technology of China in 1997, and the Mas-
ter of Applied Science degree and PhD degree
from University of Toronto in 2000 and 2004,
respectively. He was affiliated with University of
Waterloo in Canada and Eindhoven University of
Technology in the Netherlands before he joined
Nanyang Technological University in 2010. Cur-
rently, he is an associate professor in School of

Electrical and Electronic Engineering. Dr Su’s research interests cover areas
of discrete-event system theory, including (networked) supervisory control,
cyber security analysis and model-based fault diagnosis, consensus control
of multi-agent systems, and real-time optimization in complex networked
systems with applications in smart manufacturing, intelligent transportation
systems, and green buildings. In the aforementioned areas he has 75 journal
publications and more than 112 conference publications, and 2 granted
USA/Singapore patents. Dr Su is a senior member of IEEE, and an associate
editor for Automatica (IFAC), Journal of Discrete Event Dynamic Systems:
Theory and Applications, and Journal of Control and Decision. He was the
Chair of the Technical Committee on Smart Cities in the IEEE Control
Systems Society in 2016 - 2019, and is currently the Chair of IEEE Control
Systems Chapter, Singapore.

ALESSANDRO GIUA (F’17) is professor of Au-
tomatic Control at the Department of Electrical
and Electronic Engineering (DIEE) of the Univer-
sity of Cagliari, Italy. He received a laurea degree
from the University of Cagliari in 1988 and a
Master and Ph.D. degree in computer and systems
engineering from Rensselaer Polytechnic Institute
(Troy, NY, USA) in 1990 and 1992. He has also
held faculty or visiting positions in several insti-
tutions worldwide, including Aix-Marseille Uni-

versity, France and Xidian University, Xi’an, China. His research interests
include discrete event systems, hybrid systems, networked control systems,
Petri nets and failure diagnosis.

He serves the Institute of Electrical and Electronic Engineers (IEEE) as
Vice President for Conference Activities of the Control Systems Society
(CSS), having previously held the roles of General Chair of the 55th
Conference on Decision of Control (2016) and member of the CSS Board
of Governors (2013-15). He also serves the International Federation of
Automatic Control (IFAC) as a member of the Publications Committee and
has also served as chair of the IFAC Technical Committee 1.3 on Discrete
Event and Hybrid Systems (2008-14).

He is currently editor in chief of the IFAC journal Nonlinear Analysis:
Hybrid Systems, a senior editor of the IEEE Trans. on Automatic Control,
and a department editor of the Springer journal Discrete Event Dynamic
Systems.

He is a Fellow of both the IEEE and IFAC for contributions to Discrete
Event and Hybrid Systems, a recipient of the IFAC Outstanding Service
award and a laureate of the People’s Republic of China Friendship Award.

10 VOLUME 8, 2020

