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Abstract— The Fiedler vector of a graph is the eigenvector
corresponding to the smallest non-trivial eigenvalue of the
corresponding Laplacian matrix, i.e, the algebraic connectivity.
We propose and prove the convergence properties of a novel
continuous-time distributed control protocol to drive the value
of the state variables of a network toward the Fiedler vector,
up to a scale factor, assuming known algebraic connectivity.
The proposed strategy is unbiased and robust with respect
to the initial network state. The proposed strategy does not
require initialization of state variables to particular values.
By exploiting the proposed control protocol we design a local
state feedback that achieves desynchronization on arbitrary
undirected connected networks of diffusively coupled harmonic
oscillators. We provide numerical simulations to corroborate
the theoretical results.

I. INTRODUCTION

The computation of eigenvectors of the graph Laplacian L
is a problem of fundamental importance for various appli-
cations and it is the cornerstone of spectral graph theory
[1]. Among all eigenvectors, the Fiedler vector [2] plays a
pivotal role: it is the eigenvector corresponding to the second
smallest eigenvalue of the Laplacian matrix, also known as
the algebraic connectivity. To name a few, Fiedler vector is
useful in graph partitioning [3], [4], [5] and in the control of
algebraic connectivity [6], [7], [8].

Power Iteration (PI) [9] is an established iterative method
to compute the leading eigenvalue(s) and associated eigen-
vector(s) of a matrix. In [6], [8], [10], [11], [12] the
Fiedler vector is computed by means of methods based
on a distributed implementation of PI. Main drawbacks of
[6], which exploits the algorithm proposed in [13], are the
centralized initialization step and the high number and size
of the messages the nodes need to exchange. In [8] and
[11] the decentralization is carried on at each agent by two
consensus estimators, which are required to run "fast enough"
in order to expect the resulting dynamics to converge: a
formal proof is not provided. Similar approaches are used
to compute eigenvalues and the algebraic connectivity [14].
Another class of algorithms forces the nodes to oscillate at
eigenfrequencies and deduce spectral information through
Fast Forurier Transform (FFT). In [15] the Fiedler vector
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is computed by running at every node the wave equation
and computing the eigenvector components through an FFT.
This algorithm is proved to be orders of magnitude faster
than PI-based algorithms. An FFT approach for distributedly
computing the eigenvalues is given in [16].

On one hand, the main limitation of PI-based approaches
consists on the distributed normalization of the vectors at
each step, which severely affects their convergence speed and
requires a centralized initialization step. On the other hand,
FFT-based approaches suffer from a rather poor accuracy and
robustness issues.

The first main contribution of this paper is to propose
and prove the convergence properties of a novel continuous-
time distributed control protocol to drive a MAS toward
the Fiedler vector of its graph Laplacian L. The proposed
protocol relies neither on a distributed PI nor a FFT ap-
proach, thus guaranteeing robustness to initial conditions,
high convergence speed and accuracy. However, it requires
the knowledge of the algebraic connectivity, which is a rea-
sonable assumption for static networks (as in the case of our
main application) since various distributed algorithms have
been proposed to distributedly estimate all the eigenvalues
of undirected graph Laplacian [17], [16], [18], [19].

The second main contribution is to exploit the zero
mean property of the Fiedler vector, to employ the proposed
protocol as a local feedback law to desynchronize a network
of coupled harmonic oscillators by driving it toward a state
proportional to the Fiedler vector. While synchronization
has been formally and easily defined [20], [21], [22] as
the condition maximizing the order-parameter (magnitude
of the centroid of the oscillators), the opposite definition of
desynchronization is more ambiguous [23], [24], [25], [26].
In this work, we define desynchronization as the condition
zeroing the order-parameter, which is dual to the classical
definition of synchronization given in [20].

The paper is structured as follows. After introducing nota-
tion and preliminaries in Section II, a novel local protocol in
continuous-time is proposed and employed in Section III to
distributedly estimate the Fiedler vector in single-integrator
MASs and in Section IV to achieve desynchronization in
networks of diffusively coupled harmonic oscillators. In
Section V numerical simulations corroborating the theoret-
ical results are provided. Concluding remarks are given in
Section VI.

II. PRELIMINARIES

We adopt the following notation. The sets R and R+

denote, respectively, the reals and the nonnegative reals. The



set S1 denotes the unit circle, thus a point θ ∈ S1 is an
angle. Given n vectors x1, x2, . . . , xn ∈ Rm we indicate
with x = [xT1 , x

T
2 , . . . , x

T
n ]T ∈ Rnm the stacking of the

vectors. We denote with In and 1n the identity matrix and
a vector of ones of dimension n; subscripts are omitted if
the dimension is clear from the context. With A ⊗ B we
denote the Kronecker product of two matrices A and B of
opportune dimensions.

A. Multi Agent Systems

Given a Multi-Agent System (MAS), the pattern of in-
teractions among the agents is encoded by an undirected
graph. A graph G = (V,E) consists of a set of nodes
V = {1, . . . , n} representing the agents, and a set of edges
E ⊆ {V × V }. An edge (i, j) ∈ E, with i 6= j, means that
i and j can communicate. To each agent i is associated a set
of neighbors Ni = {j ∈ V : (i, j) ∈ E}, representing the
set of agents communicating with agent i. Since the graph is
undirected, (i, j) ∈ E if and only if (j, i) ∈ E. An undirected
graph is said to be connected if between any pair of nodes
i, j ∈ V there exists a path, i.e., a finite sequence of adjacent
edges that connects node i to node j. The adjacency matrix
A = {aij} of a graph G is an n×n matrix with coefficients

aij :=

{
1 for (i, j) ∈ E
0 otherwise.

The degree of each node is defined as di =
∑n
i=1 aij . The

degree matrix is defined as D = diag(d), and the Laplacian
matrix of the graph is defined as L = D − A. Let λL,i
and vL,i be the eigenvalues and corresponding eigenvectors
of the Laplacian matrix L. The eigenvalues λL,i are real
and satisfy 0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n if and only if the
graph is connected. The algebraic connectivity is denoted as
λL,2 and its associated eigenvector is known as the Fiedler
vector vL,2 and it satisfies 1T vL,2 = 0.

III. FIEDLER VECTOR ESTIMATION

Consider a network of n single integrator agents whose
topology is represented by an undirected graph G = (V,E).
Each agent is modeled as an autonomous continuous-time
system with scalar state yi ∈ R evolving according to

ẏi = ui, ∀i ∈ V. (1)

The goal of this section is to design the local control law
ui ∈ R such that each agent i estimates the i-th Fiedler
vector component of the Laplacian matrix L associated to
the in their pattern of interaction given by graph G.

A. Centralized solution

Given a square matrix M ∈ Rn×n with eigenvalue spec-
trum satisfying 0 = λM,1 < λM,2 ≤ λM,3 ≤ · · · ≤ λM,n

a system according to ẏ = −My is marginally stable and
it converges to the eigenvector vM1 associated to the zero
eigenvalue λM,1. It is straightforward to notice that if one
were able to design M such that vM,1 = vL,2, i.e., the
eigenvector associated to the zero eigenvalue of M is exactly

the Fiedler vector of the graph Laplacian L, the problem
would be solved. Such a matrix can be designed as follows

M = L+ α11T − λL,2I, (2)

whose construction consists of two conceptual steps.
1) Matrix inflation: add a term α11T to the Laplacian L

with α > λL,2/n. The smallest eigenvalue of the resulting
matrix is λL,2 while the eigenvectors are not changed;

2) Eigenvalues shifting: subtract matrix λL,2I to the re-
sulting matrix to ensure that there is a single null eigenvalue
associated to the Fiedler vector vL,2.

The design of the control law ui such that the closed-
loop matrix satisfy the previous reasoning, thus ensuring the
MAS to converge to a scaled Fiedler vector, is given in next
theorem.

Theorem 1: Consider a MAS with agents dynamics (1)
driven by the control law

ui =
∑
j∈Ni

aij (yj − yi)− α1T y + λL,2yi. (3)

If G is connected and α > λL,2/n then the MAS converges
to a scaled Fiedler vector of graph G.

Proof: Noticing that the closed-loop matrix given by
the local control law (3) is −M with matrix M given in (2),
the remaining of proof is straightforward and omitted due to
space constraints.

B. Distributed solution

The control law (3) given in Theorem 1 is not distributed
as it relies on the global information 1T y, which represents
the actual average of the states. As previously proposed in
earlier work [27], [28], [29], this problem can be overcome
by employing a distributed estimator of this quantity. In par-
ticular, we consider an integral dynamic consensus algorithm
designed as in (5), which differs from those presented in [27]
and tutorial [29].

Theorem 2: Consider a MAS with agents dynamics (1)
driven by the control law

ui =
∑
j∈Ni

aij (yj − yi)− αvi + λL,2yi. (4)

where vi is a dynamic average estimation given by

v̇i = ẏi + β(yi − vi) +KI

∑
j∈Ni

aij (zj − zi) , (5)

żi = KIvi.

If G is connected and α > λL,2, β > 0, KI > 0, then the
state y(t) of the MAS converges to a scaled Fiedler vector
of graph G for almost any initial condition.

Proof: Let w =
[
y v z

]T ∈ R3n be the state of the
MAS, which under the action of the feedback (4)-(5) can be
written in compact form as

ẇ =

 λL,2I − L −αI 0
(λL,2 + β)I − L −(α+ β)I −KIL

0 KII 0


︸ ︷︷ ︸

M

w.



To compute the eigenvalues of matrix M , we proceed
by solving det{M − λI3n} = 0. Let us partition matrix
M − λI3n = [A B;C D] into blocks, which are given next

A =

[
(λL,2 − λ)I − L −αI
(λL,2 + β)I − L −(α+ β + λ)I

]
,

B =

[
0

−KIL

]
, C =

[
0 KII

]
, D = −λI.

By Shur-complement, the determinant of M −λI3n is equal
to det{D} · det{A − BD−1C}, where det{D} = λn and
det{A−BD−1C} = det{a1L2 + a2L+ a3I}, with

a1 =
K2
I

λ
, a2 = K2

I − λL,2
K2
I

λ
+ β + λ,

a3 = λα+ λβ + λ2 − λL,2β − λL,2λ+ αβ.

Finally, letting H = a1L+ a2I , we can write

det{M − λI3n} = λn · det{HL+ a3I} = 0. (6)

Matrix HL is a product of two commuting matrices, i.e.,
HL = LH , thus any eigenvalue of HL is a product of the
eigenvalues of H and L. Furthermore, H and L share the
same set of eigenvectors because matrix H = a1L + a2I
where a1 and a2 are real scalars. Thus, from (6) one can
derive the next relationships

λ(λL,iλH,i + a3) = 0, ∀i ∈ V,
where the eigenvalues λL,i are real and satisfy
0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n since the graph is assumed to
be connected. The eigenvalues of H are λH,i = a1λL,i+a2,
thus, substituting coefficients ai yields for any ∀i ∈ V

λ3+biλ
2+ciλ+di = 0,

bi = α+ β − λL,2 + λL,i
ci = (α− λL,2)β + (K2

I + β)λL,i
di = K2

IλL,i(λL,i − λL,2)
.

One can notice that M has three eigenvalues for each λL,i
with i ∈ V , which can be computed by the above equation.
We proceed by ensuring that all eigenvalues of matrix M
have negative real part using the Routh criteria.

For i = {1, 2} it holds di = 0 and, by the Routh criteria
specialized for second degree polynomials, all solutions are
strictly negative if and only if coefficients bi, ci are positive,
which is verified if the conditions of the theorem hold.

For i ∈ {3, . . . , n} it holds di > 0 and, by the Routh
criteria specialized for third degree polynomials, all solutions
are strictly negative if and only if in addition it holds bici−
di > 0, proved next

bici − di = β(λL,2 − λL,i)2 + (2αβ + β2)(λL,i − λL,2)+

+ (αβ +K2
IλL,i)(α+ β) > 0,

since λL,i ≥ λL,2 for i ∈ {3, . . . , n}.
We conclude that, under the conditions of the theorem,

matrix M has two zero eigenvalues because di = 0 for
i ∈ {1, 2} while all other eigenvalues have negative real
part. Stability of the system can be ensured by proving that
the geometric multiplicity of eigenvalue 0 is equal to its
algebraic multiplicity, which is two. We prove this fact by

showing that two distinct eigenvectors are associated to the
zero eigenvalue. Recalling that w =

[
y v z

]T ∈ R3n is
the state of the overall system, we compute ẇ = Mw = 0,

(λL,2I − L)y = 0

βy −KILz = 0

v = 0

,

There are two feasible choices for y. First choice is y = 0,
leading to Lz = 0, i.e., z = δvL,2, ∀δ ∈ R. Second choice is
y = δvL,2, leading to z = βδ

KIλL,2
vL,2 + σ1, ∀σ ∈ R. Thus,

the zero eigenvalue has the two distinct eigenvectors

e1 =

 0
0
vL,2

 , e2 =

 vL,2
0

β
KIλL,2

vL,2 + σ
δ 1

 .
Since two linearly independent eigenvectors are associated
to the null eigenvalue which has algebraic multiplicity equal
to two, it follows that the system is marginally stable, and

lim
t→∞

y(t) = αvL,2, α ∈ R.

Let S ⊂ R3n be the space orthogonal to the Fiedler vector
vL,2. Coefficient α is null if and only if w(0) ∈ S, which is
a set of measure zero, thus completing the proof.

IV. DESYNCHRONIZATION IN
HARMONIC OSCILLATOR NETWORKS

In this section we define and study the desynchronization
problem in networks of n coupled identical harmonic oscil-
lators with natural frequency ω ∈ R. A harmonic oscillator
is a second-order linear system modeling both amplitude
M(t) and phase θ(t) of an oscillator as opposed to the
popular Kuramoto model, which models only the phase of
an oscillator as a first-order non-linear system. The position
pi(t) = Mi(t) cos(ωt+ θi(t)) ∈ R of the i-th oscillators has
the following dynamics, see [21], [22]

p̈i + ω2pi = uci + udi , (7)

where uci ∈ R is the local control feedback to be designed,
and udi ∈ R accounts for the diffusive coupling between the
oscillators and it is defined as

udi =
∑
j∈Ni

aij (ṗj − ṗi) , (8)

where aij ∈ {0, 1} are the entries of the adjacency matrix of
the undirected graph G describing both the coupling network
and the communication network: aij = 1 if oscillator i is
coupled and can communicate with oscillator j, and aij = 0
otherwise. Introducing the state vector xi = [pi ṗi]

T ∈ R2,
the state-space representation of a network of oscillators (7)
can be written as

ẋi = Axi +B(uci + udi ), i ∈ V, (9)
yi = Cxi,



where the state matrices are given by

A =

[
0 −ω
ω 0

]
, C = BT =

[
0 1

]
.

The steady state output of each oscillator i is given by

yssi (t) = Mi cos(ωt+ θi) = <
{
Mie

jθi · ejωt
}
,

where Mi ∈ R+, θi ∈ S1 are the steady state magnitude and
the phase of oscillator i, j denotes the imaginary unit and
<{·} denotes the real part of a complex number. Thus, the
collective steady-state output dynamics

1T yss(t) =

n∑
i=1

yssi (t) = <
{

n∑
i=1

Mie
jθi · ejωt

}
(10)

is encoded in the centroid1

Rejφ =
1∑n

i=1Mi

n∑
i=1

Mie
jθi ,

n∑
i=1

Mi > 0, (11)

where R ∈ R+ represents the phase-coherence of the
population of oscillators and φ ∈ S1 indicates the average
phase. The goal is to prove that the employment of the local
protocol proposed in the previous section, allows to achieve
desynchronization in a network of diffusively coupled har-
monic oscillators in the sense shown next.

Definition 1 (Desynchronization measure): Consider a
network of n identical oscillators (9). The network is said
to achieve desynchronization if

R = 0⇔ 1T yss(t) = 0, (12)

i.e., the collective steady-state output dynamics (10) is non-
null with zero mean or, equivalently, the centroid (11) is at
the origin of the Complex Plane. �

In the light of the above definition, consider a simple yet
illustrative example of a network of three oscillators. Fig. 1
depicts the following configurations: (a) all phase differences
are null, then oscillators are not desynchronized, regardless
of their amplitude; (b) amplitudes are equal and the phase
differences are θ1 − θ2 = 2π

3 , θ2 − θ3 = 2π
3 , then the

oscillators are desynchronized, this configuration is referred
in the literature as a splay state; (c) if M1 = 2M2 = 2M3

1If all oscillators have the same fixed amplitude (such is the case for
Kuramoto oscillators) the centroid reduces to Rejφ = 1

n

∑n
i=1 e

jθi and
R is known as the order parameter.

1

2

×
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×

1

1 1

γγ

γ
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(c)

× Centroid of oscillators i Number i of oscillators

Fig. 1: Steady-state configurations of a network of three oscilla-
tors: (a) not desynchronization, (b) desynchronization with same
amplitudes, (c) desynchronization with different amplitudes.

and θ2 = θ3 = θ1 + π, then the oscillators are not in a splay
state but they are desynchronized.

A. Main Result

It is known [30], [31] that a network of identical harmonic
oscillators (9) under the diffusive coupling (8) achieves
synchronization if the interconnection graph is symmetric.
The control feedback provided in the next theorem is able
to cancel out the synchronization effect of the diffusive
coupling while asymptotically steering the network to a non-
trivial desynchronized state, according to Definition 1.

Theorem 3 (Desynchronization of harmonic oscillators):
Consider a network of n identical harmonic oscillators (9)
coupled with the diffusive coupling (8) and driven by the
control law

ui = −βvi + λL,2yi. (13)

where vi is a dynamic average estimation given in (5). If G
is connected and

α > max

{
λL,2,

ω2

2λL,2

}
, KI =

√
2α2 + ω2

2λL,2
, (14)

then the network achieves desynchronization as in Definition
1 for almost all initial conditions.

Proof: Let wi =
[
xi vi zi

]T ∈ R4. The network
of coupled harmonic oscillators (9) subject to the diffusive
coupling (8) and the feedback control (4) can be written in
compact form as

ẇ =

M︷ ︸︸ ︷[
(I ⊗A∗)− (L⊗B∗)

]
w (15)

y = (I ⊗ C∗)w, (16)

where the operator ⊗ denotes the Kronecker product and

A∗ =

 A+ λL,2BC −αB 0
C(A+ (λL,2 + α)I2) −2α 0

0 KI 0

 ,
B∗ =

BC 0 0
C 0 KI

0 0 0

 , C∗ =
[
C 0 0

]
.

Since L is symmetric, there exists an orthogonal matrix P
such that Λ = PTLP is a diagonal matrix. Consider the
coordinate change

w̃ =
[
P ⊗ I4

]
︸ ︷︷ ︸

P̃

w → ˙̃w =
[
P̃TMP̃

]
︸ ︷︷ ︸

M̃

w̃. (17)

where, by exploiting the properties of the Kronecker product,

M̃ =
[
(I ⊗A∗)− (Λ⊗B∗)

]
.

Matrices M and M̃ share the same spectrum. Matrix M̃ is
a block diagonal matrix with blocks M̃i given by

M̃i = A∗ − λL,iB∗ ∀i ∈ V,
where the eigenvalues λL,i of L are real and satisfy



0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n since the graph is assumed to
be connected. It is known that the eigenvalues of the block
diagonal matrix M̃ are the eigenvalues of the blocks M̃i.

By means of the Routh criterion, it can be shown (we
omitted the steps due to space constraints) that under condi-
tion (14) all the eigenvalues of blocks M̃i are strictly inside
the left half of the Gauss plane, except for block M̃1, which
has a zero eigenvalue, and block M̃2, which has a pair of
imaginary conjugate eigenvalues. Exploiting the change of
variable (17), one can write the state evolution of the system
as

w(t) = eMtw(0) = eP̃ M̃P̃T tw(0) = P̃ eM̃tP̃Tw(0).

and so the output

y(t) = (In ⊗ C∗)w(t) = (In ⊗ C∗)P̃ eM̃tP̃Tw(0).

As t → ∞, all blocks eM̃it for i = 3, . . . , n tend to zero
because of the negative real part of their eigenvalues. Thus,
since the columns of P are the eigenvectors of matrix L it
follows

lim
t→∞

y(t) = (In ⊗ C∗)
[
vL,1v

T
L,1 ⊗ eM̃1t + vL,2v

T
L,2 ⊗ eM̃2t

]
w(0)

=
[
(vL,1v

T
L,1 ⊗ C∗eM̃1t) + (vL,2v

T
L,2 ⊗ C∗eM̃2t)

]
w(0).

Matrix M̃1 has only one null eigenvalue (the others have
negative real part) with eigenvector 15 ⊗ [0 0 0 1]T , thus

lim
t→∞

eM̃1t ∝
[
0 0
0 1

]
.

Since limt→∞ C∗eM̃1t = 0 it follows

lim
t→∞

y(t) =
[
vL,2v

T
L,2 ⊗ C∗eM̃2t

]
w(0).

The collective steady-state output dynamics results in

1T yss(t) = lim
t→∞

1T y(t) = 1T
[
vL,2v

T
L,2 ⊗ C∗eM̃2t

]
w(0)

=
[
0⊗ C∗eM̃2t

]
w(0) = 0

We proved that the network reaches a steady-state with a
zero mean state output dynamics, in which each oscillator
has a non-trivial oscillatory behaviour due to the pair of
imaginary conjugate eigenvalues of block M̃2, and so of M .
This completes the proof.
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Fig. 2: Fiedler vector estimation
error in a network of 5 agents.

0 20 40 60 80 100
101

102

103

104

105

106

107

Number of agents n

t
:
e(
t)

<
10

−
6

eq.(4)
[8]

Fig. 3: Convergence time of
Fiedler vector estimation in line
networks.

V. NUMERICAL RESULTS

Simulations have been carried out by exploiting the 4-th
Order Runge–Kutta Method.

A. Fiedler vector estimation

We compare our protocol with the one in [8] because of
their similar structure. We keep our notation for any common
variable (i.e., α, β and KI ) while we use the notation in [8]
for the remaining variables (i.e., k2, k3 and KP ).

In the first simulation, a MAS with n = 5 agents (1),
random topology and local control law (4) is considered.
Accordingly with conditions of Theorem 2, we choose the
gains for the integral dynamic average consensus estimator as
β = 25, KI = 10, and the gain for the eigenvector estimator
as α = 6. The additional gains for the algorithm in [8] are
chosen as k2 = 1, k3 = 20 and KP = 50. Network topology
and free parameters are the same of Example 1 in [8],
common variables are initialized to the same values while
the others are chosen to nullify the initial error estimation.

In the second simulation, we consider a MAS with increas-
ing number n of agents, line topology and local control law
(4). With the choice of the line topology we are considering
the worst case scenario for the dynamic average estimator.
According to conditions of Theorem 2, the gains for the
integral dynamic average consensus estimator are chosen
β = 10, KI = 15, the gain for the eigenvector estimator
is α = 2λL,2. The additional gains for the algorithm in [8]
are chosen as k2 = 1, k3 = 2λL,2 and KP = 25.

The Figures 2-3 show the results of the two simula-
tions just described. First, Fig 2 shows the error evo-
lution e(t) = ||x(t)− ṽL,2||, ṽL,2 = limt→∞ ||x(t)||vL,2.
Second, Fig. 3 shows, for different values of n, the time
required by the two algorithms to reach an error of the order
of 10−6. Both simulations reveal that, in the face of the
assumption on the knowledge of the algebraic connectivity,
the proposed algorithm has a faster convergence rate, making
it more scalable with the number of the agents in the network.

−1 1

−1

1

R

I

R(0)ejφ(0)

R(15)ejφ(15)

R(t)ejφ(t)

R(t)ejφ(t)

−1

1

5 15 35

t

1T y(0)

1T y(15)

1T y(t) for t ∈ [0, 15)

1T y(t) for t ∈ [15, 35]

y(t)

Fig. 4: Evolution of 5 coupled harmonic oscillators. The diffusive
coupling (8) is activated at t = 5, while the desynchronizing local
feedback (13)-(5) is activated at t = 15.



B. Desynchronization of harmonic oscillators
Synchronization of networked mechanical oscillator sys-

tems have been subject of interest [21], [22], [32], [33]. Here
we give a physical example of application of Theorem 3.

Consider the networked mechanical systems consisting of
n train wagons of identical mass m with linear dumper b
interaction [33] and a mass-spring-damper modeling the in-
teraction with the ground. Assuming a (ideally) null damping
in order to guarantee the best comfort to the passengers, and
denoting the spring coefficient with k, the model becomes
the one in (7)-(8) with natural frequency ω =

√
k/m =

0.1 and dumping coefficient b = 1. The feedback control
(13) models the active suspensions between wagons and
desynchronization corresponds to the minimum stress on the
rails since the sum of the forces becomes as the time passes.

Simulation of a line-topology network with n = 5
nodes is shown in Fig. 4 with α = 1.88 and KI =
2, according to Theorem 3. The oscillators start evolving
without any coupling until at t = 5 the diffusive coupling
is enabled and synchronization is achieved. Let us denote
with R(t)ejφ(t) the centroid as defined in (10)-(11) given
x(t) as the initial condition of the network x(t); it is
clear that limt→∞R(t) = R. Thus, as can be seen in
Fig. 4, the collective output dynamics has constant module
R(t) = 0.6 for t ∈ [0, 15). At t = 15 the proposed
control feedback is activated and the network is shown to
reach desynchronization in the sense of Definition 1, i.e.,
R = limt→∞R(t) = limt→∞ 1

n1
T y(t) = 1T yss(t) = 0.

VI. CONCLUSIONS

In this work we proposed a protocol for solving the
problem of distributed Fiedler vector estimation in networks
of single-integrator agents. Exploiting the zero mean property
of the Fiedler vector, we employed the proposed protocol
as a local feedback to achieve desynchronization in a net-
work of diffusively coupled harmonic oscillators. The main
advantages of the proposed protocol are its robustness to
re-initialization and a fast convergence rate. Future works
will focus on relaxing the condition on the knowledge of
the algebraic connectivity, thus paving the way to address
time-varying topologies.
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