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Motivating applications

From synchronization...

Examples of biological oscillators:

Fireflies

Neuron firing

Circadian rhythms

Signal transduction,

Cell cycles

...

The idea of synchronization:

Oscillators execute tasks
at the same time
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Motivating applications

...to desynchronization

Examples of biological oscillators:

Fireflies

Neuron firing

Circadian rhythms

Signal transduction

Cell cycles

...

The idea of desynchronization:

Oscillators execute tasks
as far away as possible from all others
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Motivating applications

Why desynchronization?

Neuronal networks Wireless sensor networks

Mechanical networks Electrical networks
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Motivating applications

Main contribution

Problem of interest

Given a network of harmonic oscillators with diffusive coupling, design
local protocol to achieve desynchronization in a distributed manner.

Outline of the contributions

1 Design of a distributed control action to achieve desynchronization in
the network;

2 Employment of the proposed protocol to estimate the Fiedler vector
in networks of single integrator agents.
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Motivating applications
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A measure of desynchronization

Harmonic oscillators

Harmonic oscillators are second-order dynamical systems exhibiting
periodic motion.

ẋi = Axi +Bui

yi = Cxi
with A =

[
0 1
−ω2 0

]
, B = Cᵀ =

[
0
1

]
.

For instance, consider a single oscillator with ω = π and x(0) =
[
0 α

]ᵀ
,
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A measure of desynchronization

General order parameter

yi(t) =Mi cos(ωt+ θi)⇒ yi = <
{
Mie

j(ωt+θi)
}
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× 12

t = 0

Assuming a rotating frame with angular frequency ω, define the centroid

Rejφ =
1∑n

i=1Mi

n∑
i=1

Mie
jθi ,

∑
i=1

n > 0, (1)

where R measures the level of desynchronization of the network.
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A measure of desynchronization

Network of harmonic oscillators

The i-th harmonic oscillator with i ∈ {0, . . . , n} = V in the network has
dynamics

ẋi = Axi +B(udi + uci )

yi = Cxi

udi =
∑
j∈Ni

(yj − yi), uci = ?

where

G = (V,E) describe the both coupling and communication networks,
and it is assumed to be undirected;

udi denotes the diffusive coupling among oscillators;

uci denotes the local control action to be designed;
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A measure of desynchronization

Desynchronization measure

Desynchronization measure

Consider a network of n identical oscillators. Denoting with yssi (t) the
steady state of the oscillators, the network is said to have achieve
desynchronization if

R = 0⇔
n∑
i=1

yssi (t) = 0, (2)

i.e., the collective steady-state output dynamics is non-null with zero mean
or, equivalently, the centroid is at the origin of the Complex Plane.
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A measure of desynchronization

Diffusive coupling leads to synchronization

Harmonic oscillators are assumed to be diffusively coupled according to a
connected undirected graph G.

ẋi = Axi +B(udi + uci )

yi = Cxi

udi =
∑
j∈Ni

(yj − yi)

Consider an oscillators network with no local control action uci = 0,
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×

t = 20
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A measure of desynchronization

What leads to desynchronization?

Harmonic oscillators are assumed to be diffusively coupled according to a
connected undirected graph G.

ẋi = Axi +B(udi + uci )

yi = Cxi

udi =
∑
j∈Ni

(yj − yi)

How to design a control action uci = ? to achieve desynchronization?
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Solution via Fiedler vector estimation

Main result

Desynchronization of harmonic oscillators

Consider a network of n diffusively coupled harmonic oscillators driven by

uci = −αvi + λ2yi

v̇i = ẏi + α(yi − vi) + γ
∑
j∈Ni

(zj − zi)

żi = γvi

If graph G is connected and

α > max{ω2, 2λ2}, γ =
√
(2α2 + ω2)/(2λ2),

then the network achieve desynchronization almost globally.
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Solution via Fiedler vector estimation

The idea behind the proof

ui =

udi︷ ︸︸ ︷∑
j∈Ni

(yj − yi)
uci︷ ︸︸ ︷

−αvi + λ2yi

v̇i = ẏi + β(yi − vi) + γ
∑
j∈Ni

(zj − zi)

żi = γvi

The quantity vi is a distributed estimator of the average output
1ᵀy =

∑n
i=1 yi and thus at steady state the input reads

u = −Ly − α11ᵀy + λ2y︸ ︷︷ ︸
−My
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Solution via Fiedler vector estimation

The idea behind the proof

u = − (L+ α11ᵀ − λ2I)︸ ︷︷ ︸
M

y

The eigenvalues of matrix L satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
The construction of matrix M consists of two steps:

1 Matrix inflation by α11ᵀ, with α > λ2/n which makes the eigenvalue
λ1 shifting forward without changing the eigenvectors.

2 Eigenvalues shifting by −λ2I which makes all eigenvalues shifting
backward without changing the eigenvectors.

Therefore,

The smallest eigenvalue of M is null.

The associated eigenvector is the Fiedler vector v2.
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Solution via Fiedler vector estimation

Main result

Ditributed Fiedler vector estimation

Consider a network of n single integrators ẏi = ui driven by

ui =
∑
j∈Ni

(yj − yi) − αvi + λ2yi

v̇i = ẏi + β(yi − vi) + γ
∑
j∈Ni

(zj − zi)

żi = γvi

If graph G is connected, α > λ2, β > 0, γ > 0, then y(t) converges almost
globally to a state proportional to the Fiedler vector of graph G, i.e.,

lim
t→∞

y(t) = cv2, c ∈ R.
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Simulations

Desynchronization of harmonic oscillators

ω = π, α = 7.7, γ = 3.03.
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At t = 6 the diffusive coupling is activated;

At t = 14 the proposed control action is activated.
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Simulations

Fiedler vector estimation

ω = π, α = 7.7, γ = 3.03.
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Conclusions

Conclusions and future directions

Conclusions:

A formal definition of desynchronization for harmonic oscillators has
been proposed;

A distributed control action to achieve desynchronization in networks
of harmonic oscillators has been designed;

The proposed protocol is shown to be able to estimate the Fiedler
vector in networks of single integrators.

Future directions:

Design a dynamic estimator for λ2

Time-varying topologies

Heterogeneous oscillators
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Conclusions

Thank you for your attention

email:
diego.deplano@unica.it

D. Deplano, M. Franceschelli, A. Giua, L. Scardovi, “Distributed Fiedler Vector

Estimation with Application to Desynchronization of Harmonic Oscillator Networks”,

IEEE Control Systems Letters (L-CSS), 2020.
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