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A Sliding Mode Observer design for the Average
State Estimation in Large-Scale Systems

Alessandro Pilloni, Diego Deplano, Alessandro Giua, and Elio Usai

Abstract— In this letter the average state estimation
problem on a large-scale system with only few gateway
nodes available for measurements is solved as the de-
sign problem of a reduced-order sliding mode observer
subjected to unmatched perturbations. Necessary and suf-
ficient conditions to guarantee the exact estimation are
derived. Still, even in the case such conditions are not
fulfilled, the boundedness of the estimation error is proved.
Finally, a criteria to minimize such bound, and a gain
adaptation law to trade-off that bound and its convergence
rate are provided. Neither the observer complexity nor the
estimation error depend explicitly on the size of the system,
thus making the approach scalable and computationally
tractable. Simulations supporting the effectiveness of the
proposed strategy and a comparison with other existing
strategies are also provided.

Index Terms— Average estimation, large-scale systems,
sliding mode observers, functional observers, state estima-
tion.

I. INTRODUCTION

STATE estimation is a critical task on Large-Scale Systems
(LSSs) since it requires a dense deployment of com-

putational resources and many sensing gateway devices [1].
Thus, to reduce the infrastructure’s costs while maintaining
computationally tractable the complexity of the estimators,
since decades, either decentralized [2], or clustered-oriented
reduced-order observers are under developments [3], [4].

Moreover, in many monitoring applications the full state
information is neither necessary nor possible due to potential
observably deficiencies. Thus, the estimation of some aggre-
gated quantities of the state is often sufficient. Here we focus
on the estimation of the average state of an LSS, which is of
interest in different field, such as the monitoring of the mean
traffic density in some portion of a communication or a road
network to prevent its congestion [5], the mean proportion of
infected people during the spreading of an epidemic [6], the
mean circulation of leaders opinions over geographic areas [7],
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the mean temperature in smart buildings through a sensor
network [8] to mention a few.

Literature review The problem of estimating the average
quantity of the states of an LSS has been outlined for first
in [9], as special case of [10]. Therein, it is proposed an
observer reduction approach for the redesign of Luenberger-
like functional observers [11], by means of suitably chosen
bi-orthogonal projection matrices. Projection matrices not only
allows to reduce the model dimension to be considered, but
the play also a key role in the design of general functional
observers [12]. As a drawback, low-order projections intro-
duce matched and unmatched unknown perturbations in the
observers’ error dynamics which need to be compensated. The
use of projection strategies is also further motivated by the fact
that LSSs are often not observable due to the limited number
of measurements nodes. In [13] conditions for the average
observability on an LSS are outlined. Then, in [14], reduced-
order open-loop and the closed-loop linear average estimators
are presented, and the needed operating conditions on an
LSS to achieve the task are discussed. Complementary results
consisting in the identification of clusters in LSSs enabling the
average estimation [4], in the analysis of the subgraph induced
by the unmeasured nodes in negative uniform networks [6],
presence of outliers [15], as well as other functionals estima-
tion [16] are further available.

Contrarily to the mentioned researches, which share the
fact to consider only linear strategies, and/or Luenberger-like
observers, here we aim at solving the average state estimation
by means of Sliding-Mode Observers (SMOs). Our choice
comes from the consideration that SMOs are globally recog-
nized as a privileged technique for the robust state estimation
on uncertain processes affected by unknown inputs. This is
because of their inherent robustness against matched [17],
[18] and unmatched [19], [20] disturbances and uncertainties,
their resilience to measurement noise similar to that offered by
Kalman filters, and finally, contrarily to control applications,
the chattering phenomena in SMOs is considered a minor
problem. Moreover, by the analysis of the so-called equivalent
injection signals useful estimations also on the unknown inputs
introduced by the mentioned low-order projections can be
obtained and thus exploited to improve the performance of
standard average estimators.

Main contributions The paper’s contribution is threefold:
1) the average state estimation on an LSS is solved as the
design problem of a reduced-order SMO subjected to unknown
inputs; 2) necessary and sufficient conditions for the exact
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average-state estimation despite the presence of both matched
and unmatched unknown inputs introduced by the used low-
order model projection are derived; 3) even when those
conditions are not fulfilled, the estimation error boundedness
is proved; then, a criteria to minimize such bound, along
with a gain adaptation criteria to trade-off that bound and its
convergence rate are derived.

Structure of the paper The paper’s notation is introduced
at the end of this section. The problem statement is outlined
in Section II. In Section III the proposed SMO design is pre-
sented, and all the main results discussed in detail. Simulations
over different test-cases are illustrated in Section IV. Finally,
in Section V concluding remarks are outlined.

Notation The sets of natural, real and complex numbers
are denoted by N, R and C. Let n and m ∈ N, then 0n×m,
and 1n×m, are n ×m matrices with all 0, and 1, entries. If
m = 1, it can be omitted and they reduce to column vectors,
whereas In is the identity matrix of dimension n. Vector x =
{xi} ∈ Rn is intended to be column vectors, and its entries
are xi ∈ R, i = 1, . . . , n. The transpose of x is xT. The
absolute value is denoted by |·| and a p-norm for vectors by
||·||p. Let M ∈ Rn×m be a matrix with independent columns,
its pseudo-inverse is M+ = (MTM)−1MT. If M is square,
eig(M) is its eigenvalue set, and rank(M) denotes its rank.
The operator sign(x) is the set-valued sign-operator which
outputs a vector whose i-th entry is 1 if xi > 0, −1 if xi < 0,
[−1, 1] otherwise.

II. PROBLEM FORMULATION

Consider an LSS composed of n ∈ N subsystems with
commensurable states, assumed scalar for simplicity xi ∈ R.
The pattern of interconnection is described by A = {aij} ∈
Rn×n, where aij = 0 if the i-th node is not instantaneously
influenced by the j-th node. The LSS is influenced by m ∈ N
external inputs u` ∈ R through B = {bi`} ∈ Rn×m. Thus, in
accordance with [9], each node satisfies

ẋi(t) =

n∑
j=1

aijxj(t) +

m∑
`=1

bi`u`(t). (1)

This general description encompasses several well-known
LSSs models, such as reaction-diffusion systems [21], com-
partmental systems [22], multi-agent systems [23] to men-
tion a few. Let us now consider only p over the n nodes
equipped with higher-level sensing and communication fa-
cilities. Without loss of generality, the LSS state vector
x = [x1, . . . , xn]T ∈ Rn can be partitioned as x = [xT

u ,y
T]T,

where y ∈ Rp and xu ∈ Rk denotes the measured and unmea-
sured states, and k = n− p. The state-space representation of
the resulting LSS is as follows

[
ẋu(t)
ẏ(t)

]
=

A∈Rn×n[
A11 A12

A21 A22

] [
xu(t)
y(t)

]
+

B∈Rn×m[
B1

B2

]
u(t)

y(t) =
[
0p×k Ip

]
C∈Rp×n

[
xu(t)
y(t)

] (2)

where u = [u1, . . . , um]T ∈ Rm stacks the system inputs,
y ∈ Rp the available measurements, and Aij and B` are
matrices with proper dimensions, with i, j, ` = 1, 2.

Problem 1 (Average state estimation) Consider the LSS in
Eq. (2) whose states are partitioned into unmeasured xu ∈ Rk
and measured y ∈ Rp. Our aim is to design an observer that,
by means of the available measurements on y ∈ Rp, and
u ∈ Rm, enables the estimation of the averaged profile of the
unmeasured states, given by

a(t) =
1

k
1T
kxu(t). (3)

In general, in an LSS only few nodes make their measurements
available at a higher-level for monitoring purposes, namely
p� n. In particular, the average estimation problem becomes
more challenging in the case the LSS in Eq. (2) is neither
observable nor detectable, because this in turn implies the es-
timation of Eq. (3) cannot be solved by means of standard full-
state observers. It is also worth to remark such observability
deficiency is guaranteed if p < n/2 [13].

This prompts to seek functional observers, which enable
by means of low-order projections the estimation of functions
of the system state. This is sufficient in a large number
of applications and leads to more computationally tractable
observers [10]. Following the related literature [14]-[9], a(t)
in Eq. (3) is made explicit by means of the next projection

z(t) = Px(t), where P =

[
1
k1

T
k 0T

p

0p×k Ip

]
∈ R(p+1)×n, (4)

and z = [a,yT]T. Then, from Eqs. (2) and (4) one derives

[
ȧ(t)
ẏ(t)

]
=

E∈R(p+1)×(p+1)[
E11 E12

E21 E22

][
a(t)
y(t)

]
+

G∈R(p+1)×m[
G1

G2

]
u(t) +

F∈R(p+1)×k[
F 1

F 2

]
δ(t) (5)

where Eij , G`, F ` with i, j, ` = 1, 2 are matrices with proper
dimension in accordance to the next partition

E=

[
1
k1

T
kA111k

1
k1

T
kA12

A211k A22

]
,G=

[
1
k1

T
kB1

B2

]
,F =

[
1
k1

T
kA11

A21

]
.

and δ(t) plays as an unmatched unknown input, such that

δ(t) =
(
Ik −

1

k
1k · 1T

k

)
xu(t) ∈ Rk. (6)

In particular, Fδ(t) in Eq. (5) accounts for what is missed
due to the projection of the vector x ∈ Rn to the subspace
z ∈ Rp+1 and vice-versa. From Eq. (6), one may further note
that δ(t) represents the element-wise deviation of each entry
of xu(t) to the average profile a(t). Thus, it yields that

1T
kδ(t) = 0, ∀ t ∈ R. (7)

A. Working assumptions
The need to estimate a(t) in Eq. (5) leads to Assumption 1.

Assumption 1 The pair (E,CP+) is observable.

Although the projection in Eq. (4) makes explicit a(t) de-
spite also potential observability deficiencies of the LSS in
Eq. (2), P ∈ R(p+1)×n is rectangular thus, differently from



PILLONI et al.: A SLIDING MODE OBSERVER DESIGN FOR THE AVERAGE STATE ESTIMATION IN LARGE-SCALE SYSTEMS 3

conventional state observation problems, @ P−1. Since the
mapping of a vector in Rn to a subspace in Rp+1 loss
information, clearly that information cannot be also recovered
by means of the pseudo-inverse projection x = P+z. That
amount of missed information, enclosed in the term Fδ(t) in
Eq. (5), plays thus as a state-dependent unknown input vector.
Follows that every unstable trend of δ(t) (or equivalently of
xu(t)) will destabilize the low-order dynamic in Eq. (5). Since
δ(t) cannot be recovered from y, this makes also impossible
the stabilization of any low-order estimation error dynamic
through y. This leads to Assumption 2, that is also required
in the related works, cf. [13]-[14], [9], [10].

Assumption 2 The LSS in Eq. (2) is stable and the inputs are
bounded, namely one of the following holds:
• eig(A) ⊂ C≤0 and

∫∞
0
||u(t)||dt <∞,

• eig(A) ⊂ C<0 and ||u(t)|| <∞ for all t ∈ R

III. MAIN RESULT

We propose now a low-order SMO for the average-state
estimation, as an application of the Utkin’s observer [24], with
additional Luenberger-type gains and subjected to an unknown
input vector. Notice that, differently with the standard SMO
formulations, our design accounts also the presence of an
unmatched perturbations, whose effect needs to be minimized,
cf. [19], [20] with [17], [18], [24].

Let ẑ = [â, ŷT]T be vector of stacking the estimation of
z = [a,yT]T, the proposed “Average-State SMO” is

[
˙̂a
˙̂y

]
=

E[
E11 E12

E21 E22

][
â
ŷ

]
+

G[
G1

G2

]
u+

H∈R(p+1)×p[
H1

H2

]
ey+

[
L
−Ip

]
ν (8)

whereHi with i = 1, 2, and L are design matrices with proper
dimensions, and

ea = â− a, ey = ŷ − y. (9)

denote the observer’s estimation errors and ν ∈ Rp is a
discontinuous vector defined as

ν = ρ sign(ey), with ρ > 0. (10)

Theorem 1 Consider an LSS as in Eq. (2), its lower order
projection in Eq. (5) and let Assumptions 1-2 be in force. Let
the design of the Average-State SMO in Eq. (8) be

H1 = −E12

H2 = Es
22 − E22 with eig(Es

22) ⊂ Cp<0

L =
(
α1T

k − F 1

)
F+

2 with α ∈ R

ρ > ||E21a(t)||∞ + ||F 2δ(t)||∞, ∀t ≥ 0

(11)

If and only there exists α ∈ R such that

rank
([
α1T

k − F 1

F 2

])
= rank(F 2) (12)

α < (F 1(F+
2 F 2 − Ik)1k)/(1T

kF
+
2 F 21k), (13)

then, for any initial condition, the estimation error on the
average profile converges exponentially to zero with rate

β(α) = (F 1 − α1T
k )(Ik − F+

2 F 2)1T
k + kα. (14)

Proof: The first part of the proof will shows the design
in Eq. (11) may allow the average-state estimation. Then, the
second part proves the necessity and sufficiency of Eqs. (12)-
(13) for the exact asymptotic average-state estimation.
(Part 1) By differentiating Eq. (9), one obtains

ėa = E11ea − F 1δ +Lν (15)
ėy = E21ea +Es

22ey − F 2δ − ν. (16)

Since ėa is decoupled from ey , and the unknown input δ(t) is
bounded by Assumption 2, andEs

22 can be arbitrarily designed
such that eig(Es

22) ⊂ Cp<0, then ey can be driven to zero, in a
finite-time by means of the non-smooth control ν in Eq. (10).
To show this, let us consider the candidate Lyapunov function
V = 1

2e
T
yey . By differentiating it along the trajectories of ey ,

one obtains V̇ = eTy ėy < −ε
√
V < 0, with ε > 0, if and only

if ρ ≥ ‖E21z1‖∞ + ‖F 2δ̄‖∞ + ε. This implies that an ideal
sliding motion on ėy = ey = 0p is guaranteed to take place
in finite-time if Eq. (11) is satisfied. Thus, during the sliding-
motion, it further results the average-state error dynamic takes
the form

ėa = E11ea − F 1δ +Lνeq 0 = E21ea − F 2δ − νeq.
Substituting for νeq yields

ėa = (E11 +LE21)ea − (F 1 +LF 2)δ. (17)

By Assumption 1, and by means of the Popov-Belevitch-
Hautus rank test [24], we conclude that E21 6= 0. The latter
condition confirms the possibility to estimate the average-state
under certain conditions on Eq. (5) and on L in Eq. (11).
(Part 2) The average-state estimation error converges expo-
nentially if and only if the next two condition hold true

(F 1 +LF 2)δ(t) = 0, ∀ t ∈ R (18)
E11 +LE21 < 0. (19)

Due to the structure of δ(t) and its property in Eq. (6), one
has that Eq. (18) holds if and only if L ∈ Rp×1 is such that

F 1 +LF 2 = α1T
k , α ∈ R. (20)

By the Rouché–Capelli theorem, the above linear system is
well-posed with respect to vector of parameters in L if and
only if the condition in Eq. (12) holds. In such case, the design
of L given in Eq. (11) is the solution to the system of equations
and the error dynamics reduces to

ėa = (E11 +LE21)ea = β(α)ea, (21)

from which the condition in Eq. (13) and the expression of the
convergence rate in Eq. (14) can be derived by substitution.
Summing up, the error ea can be made asymptotically stable
if and only if Eqs. (18)-(19) hold true, which we have proved
to be equivalent to Eqs. (12)-(13).

The next result provides some additional requirements on
the low-order projection of the LSS enabling the exact average
estimation at any arbitrary convergence rate.

Theorem 2 Consider an LSS as in Eq. (2), its lower order
projection in Eq. (5) and let Assumptions 1-2 be in force. Let
the design of the Average-State SMO in Eq. (8) be the one in
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Eq. (11), and let condition in Eq. (12) be in force. If and only
if the next relation is satisfied

rank
([

1T
k

F 1

])
= 1, (22)

then the convergence rate of the average-state estimation given
by Eq. (14) can be arbitrarily chosen through α.

Proof: The convergence rate of the average-state error
β(α) in Eq. (21) results to be a function of α. Thus, it could
be chosen arbitrarily if and only if α can be chosen arbitrarily
as well. Moreover, notice that α can be chosen arbitrarily if
and only if condition in Eq. (22) holds true. Indeed, since in
this case α does not appear anymore in Eq. (12), that rank
condition reduces to

rank
([
F 1

F 2

])
= rank(F 2),

which concludes this proof.
Notice that, in real applications it is likely that an LSS

as in Eq. (2) does not satisfy the condition in Eq. (12),
thus preventing the achievement of the exact average-state
estimation. Such condition becomes even less realistic as the
size of the system becomes larger, since it implicitly it requires
that every unmeasured node is connected to at least one output
node, that goes instead in contrast with the reality where only
a limited number of measurement node is available. Thus
motivated, in the next theorem, we show that even if Eq. (12)
is not fulfilled, the same observer design still provides a good
estimation of the average-state by ensuring a bounded steady-
state error.

Theorem 3 Consider an LSS as in Eq. (2), its lower order
projection in Eq. (5) and let Assumptions 1-2 be in force.
Let the design of the Average-State SMO in Eq. (8) be the
one in Eq. (11) and assume condition in Eq. (12) does not
hold. Then, the estimation error on the average-state converges
asymptotically within a boundary layer whose size is ēa, i.e.,

lim sup
t→∞

‖ea(t)‖ ≤ ēa.

Proof: We recall that the dynamics of the average-state
error are governed by Eq. (17),

ėa = β(α)ea − (F 1 +LF 2)δ, (23)

where β(α) is as in Eq. (14). Since condition in Eq. (12) is
no more fulfilled, the effect of the unmatched unknown inputs,
due to δ(t), can not be completely rejected. Nevertheless, the
average error trajectory ea(t) satisfies

|ez(t)| ≤
∣∣∣eβ(α)tez(0)∣∣∣+ ∣∣∣∣∫ t

0
eβ(α)(t−τ)(F 1 +LF 2)δ(τ)dτ

∣∣∣∣ .
Due to Eq. (13), the term β(α) is strictly negative, and thus
limt→∞ |eβ(α)t| = 0. Thus, one derives that

lim sup
t→∞

|ea(t)| ≤ lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣ dτ.

Since the two functions argument of the above integral are
non-negative by definition, it holds that (see [25, Sect. 23])

lim sup
t→∞

∣∣∣ea(t)∣∣∣ ≤ max
τ≥0

∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣ lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣ dτ.

Finally, by a change of variable and solving the definite
integral we can compute

lim sup
t→∞

∫ t

0

∣∣∣eβ(α)(t−τ)∣∣∣dτ =

∫ ∞
0

∣∣∣eβ(α)(τ)∣∣∣dτ =
1

|β(α)|

Then, by letting ϕ(α,L) = F 1+LF 2−α1T
k , we can further

find an upper-bound to the average-state error as

lim sup
t→∞

|ea(t)| ≤ 1

|β(α)| max
τ≥0

∣∣∣(F 1 +LF 2)δ(τ)
∣∣∣

≤ 1

|β(α)| max
τ≥0

∣∣∣ (α1T
k +ϕ(α,L)

)
δ(τ)

∣∣∣
≤ ‖ϕ(α,L)‖

|β(α)| max
τ≥0
||δ(τ)|| = ēa (24)

where in the last step we have exploited the property in Eq. (7),
and the proof is complete by considering that δ(t) is bounded
due to Assumption 2.
In the next corollary is proved that the estimation provided by
the proposed Average-State SMO is optimal in the sense that
it minimizes the effect of the unmatched unknown inputs.

Proposition 1 Consider an LSS as in Eq. (2), its lower order
projection in Eq. (5) and let Assumptions 1-2 be in force. Let
the design of the Average-State SMO in Eq. (8) be the one in
Eq. (11). Then, the bound on the average estimation error ēa
is minimized by the design of L given in Eq. (11).

Proof: We write ēa in Eq. (24) as a function L,

ēa =
‖F 1 +LF 2 − α1T

k‖
|β(α)| max

t≥0
||δ(t)||.

The bound on the error can be minimized by the choice
of L by solving the following least square problem

L∗ = argmin
L∈R1×p

‖F 1 +LF 2 − α1T
k‖. (25)

Then, according to the Projection’s Theorem [26, p. 51], or
similarly with [20, Proposition 2], the optimal L∗ is L∗ =
(α1T

k − F 1)F+
2 , which corresponds to that in Eq. (11).

From the constructing proofs and results of the previous
theorem and proposition, it is straightforward notice that not
only the average-state error is bounded by ēa in Eq. (24),
but that bound depends by α, which is a design parameter.
Therefore, in the next corollary we discuss how to make α
optimal to minimize the steady-state error bound.

Corollary 1 Consider an LSS as in Eq. (2), its lower order
projection in Eq. (5) and let Assumptions 1-2 be in force. Let
the design of the Averare-State SMO in Eq. (8) be the one
in Eq. (11). The bound on the average estimation error is
minimized if α = α∗, where α∗ is the solution of

argmin
α

||ϕ(α)||
|β(α)| (26)

subj. to β(α) < 0

where β(α) =

ϕ(α)

(F 1 − α1T
k )(I − F+

2 F 2)1T
k + kα. �

Notice that although α∗ minimize the steady-state error
upper-bound ēa, it influences also β(α). Thus, the optimal
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choice α = α∗ may have adverse effects on the convergence
rate of ea in accordance with Eq. (23). Thus, with aim to
trade-off those two performance metrics, the following gain
adaptation law is proposed

α̇(t) =

{
λ if ||ey(t)|| < ε and α(t) ≥ α∗
0 otherwise

, (27)

where λ < 0, and 0 < ε < ||ey(0)||, and α∗ < α(0),
such that Eq. (13) holds true. Intuitively, Eq. (27) adapts α
dynamically in order to guarantee, a faster convergence rate
equal to β(α(0)) during the transient regime, while preserving
the same optimal steady-state accuracy. In fact, as soon as
||ey(t)|| < ε is verified, α starts to decrease with rate λ until
α∗ is reached. Let us further note that, in accordance with
the Proof of Theorem 1, ||ey(t)|| ≡ 2V (t) is a monotonically
decreasing function.

Nonetheless, notice that although ν in Eq. (10) ideally
switches with infinite frequency, in practice due its digital
implementation only a finite switching frequency can be
achieved. This leads to a small numerical chattering on ey(t),
whose size is of the same order of the SMO sampling time Ts.
Thus, particular attention should be paid in choosing ε at least
one order bigger than Ts, to avoid a too slow convergence of
α(t) to α∗. Alternately, and the price to reduce the observer
robustness, the mentioned chattering could be completely
removed by replacing the sign-operator in Eq. (10) by means
of its sigmoid approximation [24].

IV. NUMERICAL SIMULATIONS

The effectiveness of the proposed Average-State SMO is
confirmed through simulation on two test cases, a compart-
mental system and a reaction-diffusion process. Simulations
were performed on the MATLABr/SIMULINK environment,
with the Euler fixed-step solver and Ts = 10−4 seconds.

Example 1 Consider the compartmental system of n =
11 compartments in [27], whose interconnections are as in
Fig. 1a, and whose associated Laplacian Matrix is L ∈ Rn×n.
Let xi(t) be the state of compartment i, and assumed only
the grey nodes are available for measurements. This leads
the system in the standard form in Eq. (2) where A = −L,
B = CT = [03×8, I3], xi(0) ∈ [0, 3] and i = 1, 2, . . . , 11,
whereas the LSS’s inputs are u`(t) = 10 sin((`− 1)10t) and
` = 1, 2, 3. By partitioning A as in Eq. (2), it can be noticed

1 2

3 4

5 6

7 8

9

10

11

(a) Compartmental system

99

97 98

100

(b) Reaction-diffusion process

Fig. 1: Topologies of the LSSs considered in the simulations.
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Fig. 2: Example 1: (a) True average-state profile (solid line) and its
estimation (dashed line); (b) Average estimation error.
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Fig. 3: Example 2: (a) Average state (solid line) and their estimation
(dashed lines); (b) Average-state error. Red dashed lines correspond
to the Average-State SMO, while the blue dashed lines to observer
proposed in [14].

that the necessary and sufficient condition in Eq. (12) of
Theorem 1 holds, since 1T

8A11 = 1T
8A21 = 1T

8 , thus enabling
the exact average estimation. In accordance with Theorem 1,
the following valid tuning for the proposed SMO is derived,
namely, LT = −0.251T

8 , ρ = 5, Es
22 = −10I3, whereas

α − 0.375 is chosen in accordance with Eq. (13), and such
that an arbitrarily convergence rate β = −3 was achieved.

The results of the simulation are shown in Fig. 2. In
particular, in Fig. 2a is shown the temporal profile of the
true average-state a(t) and that of its estimation â(t), through
the proposed SMO. The profile of the resulting average-state
error is instead depicted in Fig. 2b. As expected, after a finite-
time ey is element-wise zero, then the average estimation error
approaches zero with the desired exponential rate.

Example 2 Consider the reaction-diffusion process studied
in [28] and accounting n = 100 substances. The diffusion of
substances is modelled as undirected graph whose topology
is shown in Fig. 1b, and where the state of the i-th node is
xi(t). As for Example 1, only the states of the grey nodes
are assumed to be available for measurement, thus leading the
system in the standard form in Eq. (2) with A = −QL−R,
C = [096×4, I4], xi(0) ∈ [0, 3], with i = 1, 2, . . . , 100,
whereas R = 0.2I100, and Q = I100, account for the dif-
fusion, and reaction phenomenon. Finally, the system’s inputs
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are selected, time-varying, as follows

u1(t) = sin(0.1t) applied to nodes 97 and 98,

u2(t) = sin(t) applied to nodes 99 and 100,

u3(t) = 1 applied to the other boundary nodes.

By partitioning A as in Eq. (2), results that A11 and A21

do not satisfy Eq. (12) of Theorem 1, thus preventing the
exact estimation task. We thus consider the proposed gain
adaptation law in Eq. (27), with λ = −0.1, ε = 0.01 and
α(0) = −0.005 which guarantees an higher convergence rate
at the transient-regime than that with α∗ = −2.1× 10−3, that
is β(α(0)) ≈ −2.7. Then, α(t) will asymptotically approach
α∗ thus minimizing the average-state steady-state error upper-
bound. Finally, the remaining observer parameters are were
ρ = 5 and Es

22 = −10I4. In Fig. 3a, and Fig. 3b, for
comparison’s sake, the average-state estimation â(t) and the
resulting error profile ea(t) obtained by means of the proposed
Average-State SMO are finally compared with those obtained
by means of the linear observer proposed in [14, Proposition
IV.3], which has been also optimally tuned in accordance with
[14, Proposition V.2]. It is evident how the parameter α trade-
off the estimation convergence time and the expected error
upper-bound, as discussed at the end of Section III. Moreover,
thanks to the proposed gain adaptation law in Eq. (26) the
estimation convergence rate has been strongly speedup while
maintaining the optimal its steady-state accuracy.

V. CONCLUSIONS

This letter solves the average-state estimation problem on
an LSS with many unmeasurable nodes as the design of a
reduced-order SMO with matched and unmatched perturba-
tions. Conditions on the LSS to guarantee the exact estimation
are derived. Then, in the case these were not met, the error
boundedness is proved. Then, a gain adaptation strategy to
optimally minimize the steady-state error upper-bound while
trading-off its convergence rate is also devised. It is also
worth mentioning the complexity of the proposed observer is
independent to the number of unavailable nodes, thus keeping
the design scalable and computationally treatable even if the
system size is large. Decentralized versions of the proposed
design are currently under study. Moreover, extensions of the
proposed strategy towards LSSs consisting of nonlinear, and
possibly high-order nodes as in [29] also appear promising
and worthy of further investigation.

REFERENCES
[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex

networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.
[2] A. Pilloni, A. Pisano, E. Usai, P. P. Menon, and C. Edwards, “De-

centralized state estimation in connected systems,” IFAC Proceedings
Volumes, vol. 46, no. 2, pp. 421–426, 2013.

[3] A. C. Antoulas, Approximation of large-scale dynamical systems.
Philadelphia, PA, USA: SIAM, 2005.

[4] M. U. B. Niazi, C. Canudas-de-Wit, and A. Y. Kibangou, “Average
state estimation in large-scale clustered network systems,” IEEE Con-
trol Netw. Syst., vol. 7, no. 4, pp. 1736–1745, 2020.

[5] S. Coogan and M. Arcak, “A compartmental model for traffic networks
and its dynamical behavior,” IEEE Trans. Autom. Control, vol. 60,
no. 10, pp. 2698–2703, 2015.

[6] N. Martin, P. Frasca, and C. Canudas-de-Wit, “Subgraph detection
for average detectability of lti systems,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 4, pp. 2787–2798, 2020.

[7] Z. Li, M. Li, and W. Ji, “Modelling the public opinion transmission on
social networks under opinion leaders,” IOP Conference Series: Earth
and Environmental Science, vol. 69, no. 1, p. 012 125, 2017.

[8] K. Deng, P. Barooah, P. G. Mehta, and S. P. Meyn, “Building thermal
model reduction via aggregation of states,” in IEEE American Control
Conference (ACC), 2010, pp. 5118–5123.

[9] T. Sadamoto, T. Ishizaki, and J.-i. Imura, “Average state observers for
large-scale network systems,” IEEE Control Netw. Syst., vol. 4, no. 4,
pp. 761–769, 2017.

[10] ——, “Low-dimensional functional observer design for linear systems
via observer reduction approach,” IEEE Conference on Decision and
Control, pp. 776–781, 2013.

[11] P. Murdoch, “Observer design for a linear functional of the state
vector,” IEEE Trans. Autom. Control, vol. 18, no. 3, pp. 308–310,
1973.

[12] T. L. Fernando, H. M. Trinh, and L. Jennings, “Functional observability
and the design of minimum order linear functional observers,” IEEE
Trans. Autom. Control, vol. 55, no. 5, pp. 1268–1273, 2010.

[13] M. U. B. Niazi, C. Canudas-de-Wit, and A. Y. Kibangou, “Average
observability of large-scale network systems,” IEEE European Control
Conference (ECC), pp. 1506–1511, 2019.

[14] M. U. B. Niazi, D. Deplano, C. Canudas-de-Wit, and A. Y. Kibangou,
“Scale-free estimation of the average state in large-scale systems,”
IEEE Contr. Syst. Lett., vol. 4, no. 1, pp. 211–216, 2019.

[15] U. Pratap, C. Canudas-de-Wit, and F. Garin, “Outlier detection and
trimmed-average estimation in network systems,” European Journal
of Control, 2021.

[16] M. U. B. Niazi, C. Canudas-de-Wit, and A. Y. Kibangou, “State vari-
ance estimation in large-scale network systems,” in IEEE Conference
on Decision and Control (CDC), IEEE, 2020, pp. 6052–6057.

[17] S. K. Spurgeon, “Sliding mode observers: A survey,” Int. Journal of
Systems Science, vol. 39, no. 8, pp. 751–764, 2008.

[18] T. Floquet, C. Edwards, and S. K. Spurgeon, “On sliding mode
observers for systems with unknown inputs,” Int. Journal of Adapt.
Control Signal Process., vol. 21, no. 8-9, pp. 638–656, 2007.

[19] A. F. De Loza, F. J. Bejarano, and L. Fridman, “Unmatched uncer-
tainties compensation based on high-order sliding mode observation,”
Int. Journal of Robust Nonlinear Control, vol. 23, no. 7, pp. 754–764,
2013.

[20] F. Castaños and L. Fridman, “Analysis and design of integral sliding
manifolds for systems with unmatched perturbations,” IEEE Trans.
Autom. Control, vol. 51, no. 5, pp. 853–858, 2006.

[21] T. Ishizaki, K. Kashima, J.-i. Imura, and K. Aihara, “Model reduction
and clusterization of large-scale bidirectional networks,” IEEE Trans.
Autom. Control, vol. 59, no. 1, pp. 48–63, 2014.

[22] G. Di Muro, F. G. Murphy, R. D. Vann, and L. E. Howle, “Are inter-
connected compartmental models more effective at predicting decom-
pression sickness risk?” Inform. Med. Unlocked, vol. 20, no. 100334,
2020.

[23] A. Pilloni, A. Pisano, Y. Orlov, and E. Usai, “Consensus-based control
for a network of diffusion pdes with boundary local interaction,” IEEE
Trans. Autom. Control, vol. 61, no. 9, pp. 2708–2713, 2015.

[24] C. Edwards and S. Spurgeon, Sliding mode control: Theory and
applications. Crc Press, 1998.

[25] R. G. Bartle, The elements of real analysis. Wiley: New York, 1964.
[26] D. G. Luenberger, Optimization by vector space methods. John Wiley

& Sons, 1997.
[27] G. G. Walter and M. Contreras, Compartmental modeling with net-

works. Springer Science & Business Media, 2012.
[28] M. Arcak, “Certifying spatially uniform behavior in reaction–diffusion

pde and compartmental ode systems,” Automatica, vol. 47, no. 6,
pp. 1219–1229, 2011.

[29] B. Wang, W. Chen, B. Zhang, and Y. Zhao, “Regulation cooperative
control for heterogeneous uncertain chaotic systems with time delay:
A synchronization errors estimation framework,” Automatica, vol. 108,
no. 108486, 2019.


