IEEE CDC2022 60th Conference on Decision and Control December 13-17, 2021 | Austin, Texas, USA

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

A Sliding Mode Observer Design for the Average State Estimation in Large-Scale Systems

Alessandro Pilloni[®], Diego Deplano[®], Alessandro Giua[®], *Fellow, IEEE*, and Elio Usai[®], *Member, IEEE*

Dip. di Ingegneria Elettrica ed Eletronica University of Cagliari (ITALY)

632

Fondazione di Sardegna

REGIONE AUTÒNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA

alessandro.pilloni@unica.it

State estimation on LSSs

$$\Sigma : \begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A} \boldsymbol{x}(t) + \boldsymbol{B} \boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C} \boldsymbol{x}(t) \end{cases}$$

$$oldsymbol{x} \in \mathbb{R}^n \;, \; oldsymbol{y} \in \mathbb{R}^p$$

where $p \ll n$ (much fewer outputs than states)

Full State Estimation Issues on LSS:

- Sometimes is impossible due to the limited number of measurements
- If possible, it may be costly, requiring a dense deployment computational resourses and many sensing gateway devices

To reduce the cost's infrastructure while maintaining tractable the estimators' complexity *clustered-oriented, decentralized,* and *functional observers* are developed

[Antoulas 2005, SIAM book] Approximation of Large-Scale Dynamical Systems

[Pilloni et al. 2013, IFAC Proc.] Decentralized state estimation in connected systems

[Niazi et al. 2020, IEEE TCNS] Average state estimation in large-scale clustered network systems

Motivations for the average state estimation

In many LSS monitoring applications, it is often sufficient/preferred the estimation of some aggregated functionals of the system states, such as their mean

$$a(t) = rac{1}{k} \mathbf{1}_k^{\intercal} \boldsymbol{x}_u(t)$$
 with $\boldsymbol{x}_u \in \mathbb{R}^k \subset \mathbb{R}^n, \ k = n-p$ (unavailable states)

• This is particularly of interest, if the LSS is not observable and consists a coupled subsystems with commensurable states (e.g. reaction-diffusion, or compartmental, or multi-agents systems)

List of application of interest:

- Estimation of the <u>mean traffic volume</u> in portions of a road map/communication network [Coogan et al.2015, IEEE TAC] A compartmental model for traffic networks and its dynamical behaviour
- Estimation of the <u>mean circulation of leaders opinions</u> over a social network [*Li et al.2017*, IOP Series of Earth Env. Sci.] Modelling opinion transmission on social networks under opinion leaders
- Estimation of the <u>mean temperature</u> in smart buildings through a network of sensors [Deng et al.2010, Proc. of IEEE ACC] Building thermal model reduction via aggregation of states
- Estimation of the *mean proportion of infected people* during the spreading of an epidemic [*Martin et al.2020*, IEEE TNSE] Subgraph detection for average detectability of LTI systems.

Average state estimation problem (1)

• Consider an LSS consisting of *n* coupled dynamic subsystems, with commensurable states

$$\dot{x}_i(t) = \sum_{j=1}^n a_{ij} x_j(t) + \sum_{\ell=1}^m b_{i\ell} u_\ell(t) \qquad \text{(scalar only for simplicity in the notation)}}$$

where only $p \ll n$ nodes are equipped with sensing gateway devices

• The LSS can thus be partitioned into measured 🔘 and unmeasured 🔘 nodes

Problem formulation

• Let the LSS be neither observable nor detectable (to avoid trivial cases), our aim is to design an observer that, by means of y and u allows the estimation of the average of $x_u(t)$.

$$a(t) = \frac{1}{k} \mathbf{1}_k^{\mathsf{T}} \boldsymbol{x}_u(t)$$
 (mean of $\boldsymbol{x}_u(t)$)

Average state estimation problem (2)

Existing approaches exploits *low-order projections* and *functional observers* to design *linear open-loop estimators* [*Niazi 2019*, IEEE L-CSS] and *Luenberger-like observers* [*Sadamoto 2017*, IEEE TCNS]

[*Niazi et al. 2019*, IEEE L-CSS] *Scale-free estimation of the average state in large-scale systems* [*Sadamoto et al. 2017*, IEEE TCNS] *Average state observers for large-scale network systems* alessandro.pilloni@unica.it

Proposed Average SMO design (unmatched UI term) Reduced-order LSS model $\begin{bmatrix} \dot{a} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix} \begin{bmatrix} a \\ y \end{bmatrix} + \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} u + \begin{bmatrix} F_1 \delta \\ F_2 \delta \end{bmatrix}$ (1) (matched UI term) Proposed Average Sliding-Mode Observer Differently to **standard SMO formulations**, our design **account** also **unmatched UIs** due to $F_1\delta(t)$ Assumption 1 (The LSS is average observable): The pair (E, CP^+) is observable. **Assumption 2 (The LSS has bounded states):** One of the following holds: $\operatorname{eig}(\boldsymbol{A}) \subset \mathbb{C}_{\leq 0} \text{ and } \int_{0}^{\infty} \|\boldsymbol{u}(t)\| dt < \infty$ OR $\operatorname{eig}(\boldsymbol{A}) \subset \mathbb{C}_{<0}$ and $\|\boldsymbol{u}(t)\| < \infty \ \forall \ t \ge 0$ Theorem 1 (Exact average state estimation) **Consider** the *LSS's lower order projection* (1) and let *Assumptions* 1-2 be in force.

If and only if the following conditions holds $\operatorname{rank}\left(\begin{bmatrix} \alpha \mathbf{1}_{k}^{\mathsf{T}} - \mathbf{F}_{1} \\ \mathbf{F}_{2} \end{bmatrix}\right) = \operatorname{rank}(\mathbf{F}_{2})$

The following tuning

$$\boldsymbol{E}_{22}^{s} \in \mathbb{C}_{<0}^{p} \qquad \boldsymbol{\rho} > \|\boldsymbol{E}_{21}a\|_{\infty} + \|\boldsymbol{F}_{2}\boldsymbol{\delta}\|_{\infty} \qquad \boldsymbol{L} = \left(\boldsymbol{\alpha} \ \mathbf{1}_{k}^{\mathsf{T}} - \boldsymbol{F}_{1}\right)\boldsymbol{F}_{2}^{+} \qquad \boldsymbol{\alpha} < \frac{\left(\boldsymbol{F}_{1}(\boldsymbol{F}_{2}^{\mathsf{T}} \boldsymbol{F}_{2}^{\mathsf{T}} - \boldsymbol{I}_{k})\mathbf{1}_{k}\right)}{\left(\mathbf{1}_{k}^{\mathsf{T}} \boldsymbol{F}_{2}^{\mathsf{T}} \boldsymbol{F}_{2}^{\mathsf{T}} \mathbf{1}_{k}\right)} \subseteq \mathbb{R}$$

guarantees the exact asymptotic estimation of "a(t)"

Proof sketch of Theorem 1 (exact estimation)

• Let
$$\begin{cases} e_a = a - \hat{a} & \text{(average estimation error)} \\ e_y = y - \hat{y} & \text{(output estimation error)} \end{cases} \text{ then } \begin{cases} \dot{e}_a = E_{11}e_a - F_1\delta + L\nu & F_{22}^s \in \mathbb{C}^p_{<0} \\ \dot{e}_y = E_{21}e_a + E_{22}^s e_y - F_2\delta - \nu & \nu = \rho \operatorname{sign}(e_y) \end{cases}$$

Thanks to the given SMO design the average estimation error is decoupled from outputs

• Due to the **Assumption 2** (i.e. **LSS stability**) the stabilization of " $e_y(t)$ " can be studied separately

$$|F| \qquad p > ||E_{21}a||_{\infty} + ||F_{2}\delta||_{\infty} \qquad \text{Finite-time stability of } e_{y}(t) \qquad d \quad ||e_{y}(t)||_{2}^{2} < -\varepsilon \quad ||e_{y}(t)||_{2}^{2}$$

$$equivalent information \qquad equivalent information \qquad equi$$

• Consider the resulting internal dynamic by simple manipulations

 $\overline{\mathbf{T}}$

 $\mathbf{U}(\mathbf{A})$

Extension to generic LSSs (1)

Theorem 1 states that $\lim_{t \to \infty} e_a(t) = 0$ **IF**

$$\operatorname{rank}\left(\begin{bmatrix}\alpha\mathbf{1}_{k}^{\mathsf{T}}-\boldsymbol{F}_{1}\\\boldsymbol{F}_{2}\end{bmatrix}\right)=\operatorname{rank}\left(\boldsymbol{F}_{2}\right) \quad (2)$$

Although LSSs satisfying (2) exists [Niazi et al. 2019, IEEE L-CSS] it is a very restrictive requirement ۲

Theorem 2 (Relaxed average state estimation)

Consider the **LSS's lower order projection**, **Assumption 1-2** and the **Average-SMO** of **Theorem 1**. Suppose the LSS does not satisfy the rank constraint (2). Then, " $e_a(t)$ " remain **bounded** and **converges** to $\limsup_{t \to \infty} \left| e_a(t) \right| \le \frac{\|F_1 + L(\alpha)F_2 - \alpha \mathbf{1}_k^{\dagger}\|}{|\beta(\alpha)|} \times \|\delta(t)\|$ where the **boundary layer size** can be minimized by $\alpha^* = \underset{\alpha < \bar{\alpha}}{\operatorname{argmin}} \frac{\|F_1 + L(\alpha)F_2 - \alpha \mathbf{1}_k^{\mathsf{T}}\|}{|\beta(\alpha)|}$ $\alpha < \bar{\alpha}$ $=\underbrace{(E_{11}+\boldsymbol{L}\boldsymbol{E}_{21})}_{\beta(\alpha)<0}e_a-\underbrace{(\boldsymbol{F}_1+\boldsymbol{L}\boldsymbol{F}_2)\boldsymbol{\delta}}_{\text{No more zero,}}$

Proof's sketch: From the Proof of Theorem 1

$$e_y = 0 \forall t > T^*$$
 $\dot{e}_a =$

but the effect are minimized!

Because of $\delta(t)$: $\mathbf{1}_{k}^{\mathsf{T}} \delta(t) \equiv 0$ and **Projection's Theorem** [Luenberger 1997, Wiley]

$$\boldsymbol{L} = \underbrace{\left(\boldsymbol{\alpha} \mathbf{1}_{k}^{\mathsf{T}} - \boldsymbol{F}_{1}\right) \boldsymbol{F}_{2}^{\mathsf{+}}}_{\text{least-square minimizer}} \equiv \underset{\boldsymbol{L} \in \mathbb{R}^{1 \times p}}{\operatorname{argmin}} \|\boldsymbol{F}_{1} + \boldsymbol{L}\boldsymbol{F}_{2} - \boldsymbol{\alpha} \mathbf{1}_{k}^{\mathsf{T}}\| \quad \forall \boldsymbol{\alpha}$$

Finally note that

$$\limsup_{t \to \infty} \left| e^{\beta(\boldsymbol{\alpha})t} e_a(0) + \int_0^t e^{\beta(\boldsymbol{\alpha})(t-\tau)} (\boldsymbol{F}_1 + \boldsymbol{L}\boldsymbol{F}_2) \boldsymbol{\delta}(t) d\tau \right| \leq \frac{\|\boldsymbol{F}_1 + \boldsymbol{L}(\boldsymbol{\alpha})\boldsymbol{F}_2 - \boldsymbol{\alpha}\boldsymbol{1}_k^{\mathsf{T}}\|}{|\boldsymbol{\beta}(\boldsymbol{\alpha})|} \times \|\boldsymbol{\delta}(t)\|$$
alessandro.pilloni@unica.it

Estimation precision VS Convergence rate

• The previous discussion states that $\limsup_{t\to\infty} |e_a(t)| \leq \frac{\|F_1 + L(\alpha)F_2 - \alpha \mathbf{1}_k^{\mathsf{T}}\|}{|\beta(\alpha)|} \times \|\delta(t)\|$

is minimized by
$$\boldsymbol{\alpha}^* = \operatorname*{argmin}_{\boldsymbol{\alpha} < \bar{\boldsymbol{\alpha}} \subset \mathbb{R}} \frac{\|\boldsymbol{F}_1 + \boldsymbol{L}(\boldsymbol{\alpha})\boldsymbol{F}_2 - \boldsymbol{\alpha} \mathbf{1}_k^{\mathsf{T}}\|}{|\boldsymbol{\beta}(\boldsymbol{\alpha})|}$$

• Moreover, by simple manipulation one further derives that

$$\boldsymbol{\alpha}^{*} = \operatorname*{argmin}_{\boldsymbol{\alpha} < \bar{\boldsymbol{\alpha}} \subset \mathbb{R}} \frac{\|\boldsymbol{F}_{1} + \boldsymbol{L}(\boldsymbol{\alpha})\boldsymbol{F}_{2} - \boldsymbol{\alpha}\boldsymbol{1}_{k}^{\mathsf{T}}\|}{|\boldsymbol{\beta}(\boldsymbol{\alpha})|} = \cdots = \operatorname*{argmin}_{\boldsymbol{\alpha} < \bar{\boldsymbol{\alpha}} \subset \mathbb{R}} \frac{\|(\boldsymbol{F}_{1} - \boldsymbol{\alpha}\boldsymbol{1}_{k}^{\mathsf{T}})(\boldsymbol{I}_{k} - \boldsymbol{F}_{2}^{+}\boldsymbol{F}_{2})\|}{|(\boldsymbol{F}_{1} - \boldsymbol{\alpha}\boldsymbol{1}_{k}^{\mathsf{T}})(\boldsymbol{I}_{k} - \boldsymbol{F}_{2}^{+}\boldsymbol{F}_{2})\boldsymbol{1}_{k}^{\mathsf{T}} + k\boldsymbol{\alpha}|}$$

Although α^* minimize the steady-state average error upper-bound, its optimal choice may have adverse effects on the convergence rate $\beta(\alpha)$ of the estimation error dynamics where $\dot{e}_a = \overbrace{(E_{11} + L(\alpha)E_{21})}^{\beta(\alpha) < 0} e_a - (F_1 + L(\alpha)F_2)\delta$ $L = (\alpha \ \mathbf{1}_k^{\mathsf{T}} - F_1) \ F_2^+$

• To trade-off those 2 performance metrics, the next simple but effective adaptation law is proposed

$$\dot{\alpha}(t) = \begin{cases} -\lambda & \text{if } \left| \left| \boldsymbol{e}_{y}(t) \right| \right| < \varepsilon \text{ and } \bar{\alpha} > \alpha(t) \ge \alpha^{*} & \text{where} \\ 0 & \text{otherwise} & 0 < \varepsilon < \left\| \boldsymbol{e}_{y}(0) \right\| \end{cases}$$

Numerical results

Concluding remarks

Main results:

- The average-state estimation problem on LSSs with many unmeasurable nodes is solved as the design of a reduced-order SMO subjected to matched and unmatched perturbations
- IMPORTANT: Differently to the existing approaches our Average-SMO allows to <u>resort</u> <u>information on the UIs</u> to improve the robustness, precision and convergence rate of estimation
- **IMPORTANT:** Our design is general, and **it can be used without** modification on LSSs independently to the fact they satisfy or not the exact estimation condition

$$\operatorname{rank}\left(\begin{bmatrix}\alpha\mathbf{1}_{k}^{\mathsf{T}}-\boldsymbol{F}_{1}\\\boldsymbol{F}_{2}\end{bmatrix}\right)=\operatorname{rank}\left(\boldsymbol{F}_{2}\right)$$

• The **observer complexity** is independent to the number of unavailable nodes, thus keeping the design scalable and computationally treatable even if the system size is large.

Hints for future investigations:

- Decentralized and clustered-oriented versions of the proposed design are currently under study
- Alternative fixed-time estimation strategies appear also promising and worthy of further investigation

See control systems letters, vol. 6, 2022 IEE CONTROL SYSTEMS

Thank you for your kind attention

Any question, suggestion, etc. is welcome...

REGIONE AUTÒNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA This work has received funding by the **Sardinian Regional Government** [POR SARDEGNA FSE 2014-2020-Asse III] and **Fondazione di Sardegna**, project: IQSS.

Fondazione di Sardegna