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State estimation on LSSs

Consider a Large Scale System (LSS)
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where p < n (much fewer outputs than states)

Full State Estimation Issues on LSS:
 Sometimes is impossible due to the limited number of measurements

* If possible, it may be costly, requiring a dense deployment computational resourses and many
sensing gateway devices

To reduce the cost’s infrastructure while maintaining tractable the estimators’ complexity
clustered-oriented, decentralized, and functional observers are developed

[Antoulas 2005, SIAM book] Approximation of Large-Scale Dynamical Systems
[Pilloni et al. 2013, IFAC Proc.] Decentralized state estimation in connected systems

[Niazi et al. 2020, |IEEE TCNS] Average state estimation in large-scale clustered network systems
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Motivations for the average state estimation

In many LSS monitoring applications, it is often sufficient/preferred the estimation of some
aggregated functionals of the system states, such as their mean

1
a(t) = Z 1] x,(t) with =z, € R¥ cR", k=n—p (unavailable states)

This is particularly of interest, if the LSS is not observable and consists a coupled subsystems with
commensurable states (e.g. reaction-diffusion, or compartmental, or multi-agents systems)

List of application of interest:

Estimation of the mean traffic volume in portions of a road map/communication network
[Coogan et al.2015, IEEE TAC] A compartmental model for traffic networks and its dynamical behaviour

Estimation of the mean circulation of leaders opinions over a social network

[Li et al.2017, IOP Series of Earth Env. Sci.] Modelling opinion transmission on social networks under opinion leaders

Estimation of the mean temperature in smart buildings through a network of sensors

[Deng et al.2010, Proc. of IEEE ACC] Building thermal model reduction via aggregation of states

Estimation of the mean proportion of infected people during the spreading of an epidemic
[Martin et al.2020, IEEE TNSE] Subgraph detection for average detectability of LTI systems.
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Average state estimation problem (1)

Consider an LSS consisting of n coupled dynamic subsystems, with commensurable states

(scalar only for simplicity in the notation)

xi(t) = Zn: aijx;j(t)+ i bigu(t)
j=1 =

where only p << n nodes are equipped with sensing gateway devices

* The LSS can thus be partitioned into measured O and unmeasured © nodes

Problem formulation
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Let the LSS be neither observable nor detectable (to avoid trivial cases), our aim is to design

an observer that, by means of y and u allows the estimation of the average of x, (t).

|
a(r) Ta,(t)  (mean of x,(t))

k
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Average state estimation problem (2)

Existing approaches exploits low-order projections and functional observers to design linear open-
loop estimators [Niazi 2019, |IEEE L-CSS] and Luenberger-like observers [Sadamoto 2017, IEEE TCNS]

zcRPH] PcRPHDxn pepn
low-order projecti T T e T
lou@rEter preliEaien [a(t)} _ [Elz OIT,] {mu(t)]
o .....zzzz (making model more tractable) y(1) 0,«x I, y(t)

0’0:0:+:¢,+,+,g

P : pseudo-inverse

x,\t — alt
Since P is rectangular the inverse-projection [y((t))] — PT(PPT)"! [y((t)} losses information!!!!

Such missed information will bother us in term of the state-dependent Unknown Input (Ul) “F&(t)”

o) - ] (o 8] ()

Y

E=PAP+cRP+1)x(pt1) G=PBecR({p+1)xm 8(r)eRPF! 1 1]6(1)=0
(unknown input)

Ay The presence of matched & unmatched Uls makes us think

'%}L Sliding-Mode Observers (SMOs) and output injection concepts

could be used to design a more performant nonlinear observer

d is the deviation
of x,,(t) from a(t)

178(r) =0

[Niazi et al. 2019, |IEEE L-CSS] Scale-free estimation of the average state in large-scale systems

[Sadamoto et al. 2017, IEEE TCNS] Average state observers for large-scale network systems
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Proposed Average SMO design (unmatched UT term)
a Enn Epl|a G| Fid —
e Reduced-order LSS model [y] = [Ezl En| [y] + {Gz} u+ [Fﬁ] (1)
(matched UI term)

* Proposed Average Sliding-Mode Observer

Vs s €y v
a|_[En Enplla], |G ~En |7/ L] ————
Al= ~ |+ -4 . + B
[y] [Ezl Ezz] [y] [GJ“’ [E;z Ezz] (9—-vy) -1, p sign(y—9)

Differently to standard SMO formulations, our design account also unmatched Uls due to F,6(t)

p
Assumption 1 (The LSS is average observable): The pair (E, CP™) is observable.
Assumption 2 (The LSS has bounded states): One of the following holds:

eig(A) C Cq and / |w(t)||dt < oo OR  eig(A) CCo and |[u(f)]| <o V ¢ >0
0

- J

Theorem 1 (Exact average state estimation)

Consider the LSS’s lower order projection (1) and let Assumptions 1-2 be in force.

. . er- OC]_;CI- — F]
If and only if the following conditions holds rank 2 = rank (F»)

The following tuning

Fi(FF—I)1
By eCly  p>|End|e+||F2b)le L=(al]—F)F o < F1E B — L)1)

C

| guarantees the exact asymptotic estimation of “a(t)”




Proof sketch of Theorem 1 (exact estimation)

’

Let e, = a—a (average estimation error) th éqo=Ey1e,— F10+ Lv E5, € C‘ZO
. e en

ey =Y — Y (output estimation error)

[ Thanks to the given SMO design the average estimation error is decoupled from outputs

* Due to the Assumption 2 (i.e. LSS stability) the stabilization of “e,(7)” can be studied separately
V(1) V()

El> [ p > || Ezal|e+ || F20|| ] Finite-time stability of e,(t) > diHey(f)H% < —¢ |ley(®)|
t

equivalent information Is it negative? Can it be zero?

N

Op 0 - ~ - N ~ - 7 ~
%(:Eglea—I—Egzg’,{—ngé—Ueq THEN ) Veq =E2]€a—F26 |:> ey = (E11+LE21)€a—(F1—|—LF2)5

1] - F
* Because of d(r) : 1; 6(r) =0 Rouché-Capelli theorem > rank ([a kFg 1]) = rank (F)

. Is it negative? =0
JL= (o1} —F) F :[F LF:OCIT]V(XER > . % ~ ~
( k 1) 2 1+ 2 k éa:(Ell_i_LEZI)ea_alIId

* Consider the resulting internal dynamic by simple manipulations

Fi1, F>1, IF > o < o = (FI(F2+F2_Ik)1k) CR
. ~ = A~ = (1;F2+F21k) -
ea:( Eyw+ L E2l)ea:B(a)ea
|
(@ 1]—F))Fy THEN > PB(a) <0
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Extension to generic LSSs (1)
* Theorem 1 states that lime, () =0 i> [mnk([al’giﬂ]):rank( Fz)] 2)

[—o0

» Although LSSs satisfying (2) exists [Niazi et al. 2019,IEEE L-CSS] it is a very restrictive requirement

Theorem 2 (Relaxed average state estimation)

Consider the LSS’s lower order projection, Assumption 1-2 and the Average-SMO of Theorem 1.

Suppose the LSS does not satisfy the rank constraint (2).

: | Fy+L(x) P, —al]||
Then, “e4(t)” remain bounded and converges to h?lsup ea(f)‘ < Bla)] x|l
 |Fy+L(a)F, —al]
where the boundary layer size can be minimized by " = argmin | Ei (0) F el
N <@l B(a)] )
Proof’s sketch: From the Proof of Theorem1 | e, =0V > T> €a = £E11 +VLE21260 _EFl +fF2)(z
B(a)<0 No more zero,

but the effect
are minimized!

* Becauseof §(r) : 1] 6(r) =0 and Projection’s Theorem [Luenberger 1997, Wiley]

L= ((Xl,I—Fl)FZJ“ =argmin ||+ LF—all|| Va

~ ~ < LeRIxp
least-square minimizer A _
o FinaIIy note that =0 mlnlrrlizes this term
! Fi+La)P—ol]
nmsup‘eﬁ(“ﬁea(owr / Pl (B + LF)é(t)dt| < I £ |(ﬁ ()a;' il x||o()|
t—roo 0
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Estimation precision VS Convergence rate

Fi+L(o)F —al]
* The previous discussion states that limsup ea(z‘)‘ < |#1 + Lo) Fy i X [[0(2)]|
>0 B(a)|
| |Fy+L(a)F —al]
is minimized by o™ = argmin I () il
oa<acCR ‘ﬁ(a”
* Moreover, by simple manipulation one further derives that
: . |[Fi+ L(a)F — alf| . |(Fi — a1}) (I — F, Fy)|
o = argmin e = argmin
a<acCR B(a)| a<acR |(F —alg)(Ik—Fng)lﬁka
f Although a™ minimize the steady-state average error upper-bound, its optimal choice h
may have adverse effects on the convergence rate [ («) of the estimation error dynamics
0
where P A= .
L éo= (El1 + L(a)Ep ) e, — (F1 + L(a) F»)6 L= (al]—F)F y

* To trade-off those 2 performance metrics, the next simple but effective adaptation law is proposed

A>0

where
0<e<|ey(0)]

(1) = —A if||ey(r)|| <€and & > a(r) > a*
o otherwise



Numerical results

(Case 1 A compartmental
system consisting of
n=11,p =3
compartments whose
interconnections are as in the
given directed graph

[ Rank Cond. [YES] ]

SMO Tuning: p =5,E5 =—1013,a : B(a) € R
o

_ ™\
[Walter et al. 2012,Springer]

SMO tuning: p =5, E5, =
(&

<
Case 2 A reaction-diffusion  [Arcak 2011,Automatica]
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substances which diffusion is
modelled as the given
undirected graph

[ Rank Cond. [NO] ]
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* Since the rank condition holds
B@

p < O
é’a:(E]] +L((X)E2]>€a—(F )0

* Then L is chosen arbitrarily to perform a desired

convergence rate, e.g., f = —3
Estimation . Error
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* Since the rank condition does not holds
= (E]l + L((X)Ez])ea — (Fl —l—LFz)(i
* The Average-SMO is now compared with the

linear observer in [Niazi et al. 2019,|EEE L-CSS]
which exploits also a different optimal tuning

Estimation Error
06— o5
0.4 04f
0.2 | 0.3 ?1‘1 Ave-SMO

0 0.2 h*\[1\I/iazietal.2019]
| 01p N
[Niazi et al. 2019]
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Concluding remarks

Main results:

* The average-state estimation problem on LSSs with many unmeasurable nodes is solved as the
design of a reduced-order SMO subjected to matched and unmatched perturbations

 |IMPORTANT: Differently to the existing approaches our Average-SMO allows to resort
information on the Uls to improve the robustness, precision and convergence rate of estimation

* IMPORTANT: Our design is general, and it can be used without modification on LSSs
independently to the fact they satisfy or not the exact estimation condition

T_
rank ( [alsz Fl] ) = rank (F3)

The observer complexity is independent to the number of unavailable nodes, thus keeping the
design scalable and computationally treatable even if the system size is large.

Hints for future investigations:

* Decentralized and clustered-oriented versions of the proposed design are currently under study

* Alternative fixed-time estimation strategies appear also promising and worthy of further
investigation
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