

A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence

Diego Deplano*, Nicola Bastianello[†], Mauro Franceschelli*, Karl H. Johansson[†]

^{*}Department of Electrical and Electronic Engineering, University of Cagliari, Italy [†]School of Electrical Engineering and Computer Science and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden.

IEEE Conference on Decision and Control (CDC), 13-15 December 2023

Outline

1 Problem statement and motivation

- **2** Proposed protocols and main results
- **3** Numerical simulations
- **4** Conclusions and future perspectives

Outline

1 Problem statement and motivation

- 2 Proposed protocols and main results
- 3 Numerical simulations
- ④ Conclusions and future perspectives

Proposed protocols and main results

Numerical simulations

Conclusions and future perspectives 0000

Scenarios

Peer-to-Peer Networks

Wireless Sensor Networks

Multi-Robot Systems

Diego Deplano

Problem statement and motivation	Proposed protocols and main results 00000	Numerical simulations	Conclusions and future perspectives
Problem set-up			
Undire Set o S Reference si Neigh Number of neigh	ected network $\rightarrow \mathcal{G} = (\mathcal{V}, \mathcal{E})$ Set of agents $\rightarrow \mathcal{V} = \{1, \dots, n\}$ f interactions $\rightarrow \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ tate of agent $i \rightarrow x_i \in \mathbb{R}$ gnal of agent $i \rightarrow u_i \in \mathbb{R}$ bors of agent $i \rightarrow \mathcal{N}_i = \{j \mid (i, j) \in \mathcal{E}\}$ bors of agent $i \rightarrow \eta_i = \mathcal{N}_i \in \mathbb{R}$ Framework \rightarrow Discrete-time $k \in \mathbb{N}$		
	$x_i(k) = f_i(u_i(k), x_i(k-1), x_i(k-1))$	$(-1): j \in \mathcal{N}_i), i \in \mathcal{V}$	(1)

Objective

The agents must cooperate to track an objective function $obj(u(k)) \in \mathbb{R}$ of the reference signals. We focus on the average avg(u(k)), maximum max(u(k)), and median med(u(k)) functions.

Diego Deplano

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
000●	00000	00000	

Literature

Definition: Dynamic consensus problem

Design the local interaction rules f_i such that the agents' state x_i converges to a scalar function $obj: \mathbb{R}^n \to \mathbb{R}$ of the reference signals u_1, \ldots, u_n , i.e., there exists $\varepsilon \ge 0$ such that

$$\|x_i(k) - \operatorname{obj}(u_1(k), \dots, u_n(k))\| \le \varepsilon, \qquad k \ge k^*, \quad i \in \mathcal{V},$$
(2)

The **average** (sum of values of a data set divided by number of values):

- Spanos, Olfati-Saber, and Murray, "Dynamic consensus on mobile networks", in IFAC World Congr. (2005)
- Freeman, Yang, and Lynch, "Stability and convergence properties of dynamic average consensus estimators", in IEEE 45th Conf. on Dec. and Control (2006)
- Zhu and Martinez, "Discrete-time dynamic average consensus", in Automatica (2010)
- Chen, Cao and Ren, "Distributed average tracking of multiple time-varying reference signals with bounded derivatives", in IEEE Trans. Autom. Control (2012).
- Kia, Cortés, and Martinez "Dynamic average consensus under limited control authority and privacy requirements", in Int. Journal of Robust and Nonlin. Control (2015)
- Scoy, Freeman, and Lynch, "A fast robust nonlinear dynamic average consensus estimator in discrete time", in 5th IFAC NecSys (2015)
- Franceschelli, and Gasparri, "Multi-stage discrete time and randomized dynamic average consensus", in Automatica (2019)
- George and Freeman, "Robust dynamic average consensus algorithms", in IEEE Trans. Autom. Control (2019)
- Montijano E. and J.I., Sagues, and Martinez, "Robust discrete time dynamic average consensus", in IEEE Trans. Autom. Control (2019)
- Kia, Scoy, Cortés, Freeman, Lynch and Martinez, "Tutorial on dynamic average consensus: The problem, its applications, and the algorithms", in *IEEE Control Systems Magazine* (2019).

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
000●	00000	00000	

Literature

Definition: Dynamic consensus problem

Design the local interaction rules f_i such that the agents' state x_i converges to a scalar function $obj: \mathbb{R}^n \to \mathbb{R}$ of the reference signals u_1, \ldots, u_n , i.e., there exists $\varepsilon \ge 0$ such that

$$\|x_i(k) - \operatorname{obj}(u_1(k), \dots, u_n(k))\| \le \varepsilon, \qquad k \ge k^*, \quad i \in \mathcal{V},$$
(2)

The maximum (highest value of a data set).

- Deplano, Franceschelli, Giua, "Dynamic max-consensus with local self-tuning", in IFAC-PapersOnLine (NecSys), (2022)
- Deplano, Franceschelli, Giua, "Discrete-time Dynamic consensus on the max value", in 15th European Workshop on Advanced Control and Diagnosis, Springer (2021)
- Deplano, Franceschelli, and Giua, "Dynamic min and max consensus and size estimation of anonymous multi-agent networks", in IEEE Trans. Autom. Control (2021).
- Sen, Sahoo, and Slingh, "Global max-tracking of multiple time-varying signals using a distributed protocol", in IEEE Control and Sys. Lett. (2022)

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
000●	00000	00000	

Literature

Definition: Dynamic consensus problem

Design the local interaction rules f_i such that the agents' state x_i converges to a scalar function $obj: \mathbb{R}^n \to \mathbb{R}$ of the reference signals u_1, \ldots, u_n , i.e., there exists $\varepsilon \ge 0$ such that

$$\|x_i(k) - \operatorname{obj}(u_1(k), \dots, u_n(k))\| \le \varepsilon, \qquad k \ge k^*, \quad i \in \mathcal{V},$$
(2)

The **median** (*middle value separating the greater and lesser halves of a data set*):

- Sanai Dashti, Seatzu, and Franceschelli, "Dynamic consensus on the median value in open multi-agent systems", in IEEE 58th Conf. on Dec. and Control (2019).
- Vasiljevic, Petrovic, Arbanas, and Bogdan, "Dynamic median consensus for marine multi-robot systems using acoustic communication", in IEEE Robot. and Autom. Lett. (2020).
- Yu, Chen and Kar, "Dynamic median consensus over random networks", in IEEE 60th Conf. on Dec. and Control (2021).

Outline

1 Problem statement and motivation

2 Proposed protocols and main results

- 3 Numerical simulations
- ④ Conclusions and future perspectives

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
0000		00000	0000

Dynamic consensus as a time-varying optimization problem

The dynamic consensus problems on average, maximum, and median functions can be recast as distributed time-varying optimization problems of the following type

$$x^{*}(k) = \underset{x_{1},...,x_{n}}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{1}{p} |x_{i} - u_{i}(k)|^{p}$$

s.t. $x_{i} = x_{j} \quad \forall (i,j) \in \mathcal{E}$
 $x_{i} \in \mathcal{X}_{i,k} \quad \forall i \in \mathcal{V}.$ (3)

If \mathcal{G} is connected then there exists $x_k^* \in \mathbb{R}$ such that $x^*(k) = x_k^* \mathbf{1}$. Moreover:

i) If
$$p = 2$$
 and $\mathcal{X}_{i,k} = \mathbb{R}$, then $x_k^* = \operatorname{avg}(u(k))$;
ii) If $p = 2$ and $\mathcal{X}_{i,k} = \{x \ge u_i(k)\}$, then $x_k^* = \max(u(k))$;
iii) If $p = 1$ and $\mathcal{X}_{i,k} = \mathbb{R}$, then $x_k^* = \operatorname{med}(u(k))$.

roblem statement and motivation Proposed protocols and main results Numerical simulations Conclusions 000 00€00 00000 0000	s and future perspective
---	--------------------------

DOT-ADMM: DISTRIBUTED OPERATOR THEORETICAL (DOT) ADMM ALGORITHM

(Input): Relaxation parameter $\alpha \in (0,1)$; penalty parameter ρ (Initialization): $x_i(0), z_{ij}(0) \in \mathbb{R}$ for $i \in \mathcal{V}$ and $j \in \mathcal{N}_i$ **(Output):** Each node $i \in \mathcal{V}$ outputs the approximated solution $x_i(k)$ to the optimization problem (Execution): for $k = 1, 2, 3, \ldots$ each node i does 1) Update the local cost $f_{i,k}$ and update the state variable $x_i(k) = \operatorname{argmin}_{x_i \in \mathcal{X}_{i,k}} \left\{ \frac{1}{p} |x_i - u_i(k)|^p + \frac{\rho \eta_i}{2} x_i^2 - x_i \sum_{i \in \mathcal{N}_i} z_{ij}(k-1) \right\}$ (4)2) Transmit a packet $y_{i \to j}$ to each neighbor $j \in \mathcal{N}$, $y_{i \to i}(k) = 2\rho x_i(k) - z_{ii}(k-1);$ 3) For each packet $y_{i \to i}$ received by a neighbor $j \in \mathcal{N}_i$ update the auxiliary variable $z_{ii}(k) = (1 - \alpha) z_{ii}(k - 1) + \alpha u_{i \to i}(k).$ N. Bastianello, D. Deplano, M. Franceschelli, K.H. Johansson, "Online distributed learning over random

N. Bastianello, D. Deplano, M. Franceschelli, K.H. Johansson, "Online distributed learning over rand networks", Transactions on Automatic Control (under review)

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
0000	○○○●○	00000	

Main results

Theorem 1: Explicit updates for average, maximum and median consensus

The explicit DOT-ADMM updates in eq. (4) for solving the "dynamic consensus" problem, under Assumption 1 and over a connected network \mathcal{G} , are given by:

• Dynamic average consensus:

$$x_i(k) = \frac{u_i(k) + \sum_{j \in \mathcal{N}_i} z_{ij}(k-1)}{1 + \rho \eta_i}$$

• Dynamic maximum consensus:

$$x_i(k) = \max\left\{u_i(k), \frac{u_i(k) + \sum_{j \in \mathcal{N}_i} z_{ij}(k-1)}{1 + \rho \eta_i}\right\}.$$

• Dynamic median consensus:

$$x_i(k) = u_i(k) + \max\{\theta_i^- - u_i(k), 0\} + \min\{\theta_i^+ - u_i(k), 0\}$$

where

$$\theta_i^{\pm}(k) = \frac{\sum_{j \in \mathcal{N}_i} z_{ij}(k-1) \pm 1}{\rho \eta_i}$$

Diego Deplano

A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence

Main results

Assumption 1

The variation of the reference signals $u_i(k)$ are bounded a constant $\Pi \ge 0$, i.e., for $k \ge 0$ it holds

 $\Delta u_i(k) = |u_i(k) - u_i(k-1)| \le \sigma$

Theorem 2: Linear convergence and bounded tracking error

Consider a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ executing the DOT-ADMM Algorithm to solve the dynamic average, maximum, and median consensus problem in the case of time-varying reference signals $u_i(k)$ with bounded derivative $\sigma \ge 0$ as in Assumption 1. If the graph \mathcal{G} is connected:

• The tracking error $e(k) = ||x(k) - obj(u(k))\mathbf{1}||$ converges R-linearly to an interval $\propto [0, \sigma]$.

Diego Deplano

Outline

1 Problem statement and motivation

2 Proposed protocols and main results

8 Numerical simulations

④ Conclusions and future perspectives

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
0000	00000	00000	

Linear convergence and robustness to re-initialization

• Network of n = 5 agents with:

$$\alpha = 0.5, \quad \rho = 2, \quad \sigma = 0.01$$

• Agents' states and reference signals are initialized as

$$x(0) = [0, 0.5, 1, 1.5, 2]^{\mathsf{T}}$$

 $u(0) = [0, 0, 0, 2, 2]^{\mathsf{T}}.$

• Reference signals vary according to

Diego Deplano

$$u(k+1) = \begin{cases} u(k) + \sigma & \text{if } k \in (0, 150] \\ u(k) & \text{if } k \in (150, 300] \\ u(k) - \sigma & \text{if } k \in (300, 600] \end{cases}$$

• Unexpected disconnection of an agent at At step k = 450: for $k \ge 450$ the network consists of only 4 agents

Comparison with the state-of-the-art: dynamic average consensus

Comparison with:

- [5] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez, "Tutorial on dynamic average consensus: The problem, its applications, and the algorithms", IEEE Control Systems, 2019.
- [19] M. Franceschelli and A. Gasparri, "Multi-stage discrete time and randomized dynamic average consensus", Automatica, 2019.

Conclusions:

- The protocol in [19] is affected by a "delay" of about 70 time steps, much larger than the proposed protocol;
- The protocol in [5] does not guarantee that all agents achieve a good estimation of the time-varying average value, in contrast to the proposed protocol;
- Similar convergence rates.

Comparison with the state-of-the-art: dynamic maximum consensus

Comparison with:

- [6] D. Deplano, M. Franceschelli, and A. Giua, "Dynamic max-consensus with local self-tuning", IFAC-PapersOnLine (NecSys), 2022.
- [7] D. Deplano, M. Franceschelli, and A. Giua, "Dynamic min and max consensus and size estimation of anonymous multiagent networks", IEEE Transactions on Automatic Control, 2023.

Set-up:

Diego Deplano

• The agents do not know the correct upper bound to the derivative of the reference signals.

Conclusion:

• Every time the reference signal decreases at a rate greater than expected, the track is lost by the protocol in [6][7], while the proposed protocol maintains the tracking all the time

Comparison with the state-of-the-art: dynamic median consensus

Comparison with:

• [10] G. Vasiljevic, T. Petrovic, B. Arbanas, and S. Bogdan, "Dynamic median consensus for marine multi-robot systems using acoustic communication", IEEE Robotics and Automation Letters, 2020.

Set-up:

• The reference signals have heterogeneous behavior.

Conclusion:

• The protocol in [10] fails in converging to the median value, thus the proposed protocol is the first in the current literature to solve this problem.

Outline

1 Problem statement and motivation

2 Proposed protocols and main results

3 Numerical simulations

4 Conclusions and future perspectives

Diego Deplano

Problem statement and motivation	Proposed protocols and main results	Numerical simulations	Conclusions and future perspectives
0000	00000	00000	○●○○

Conclusions and future directions

Contribution 1

Three novel protocols to solve the dynamic consensus on the average, maximum, and median functions are proposed, with improved performance with respect to the state-of-the-art:

- Better trade-off between convergence rate and tracking error for the dynamic average consensus;
- Higher robustness to unexpected spikes in the inputs' variation for the dynamic max consensus;
- The first and only protocol that solves the dynamic median consensus with heterogeneous inputs.

Contribution 2

The protocols are derived within a unified framework by exploiting the newly proposed DOT-ADMM^{*}, and have shown to have the following properties:

- Linear convergence rate for a class of (not necessarily strong) convex problems;
- Robustness to re-initialization;

*N. Bastianello, D. Deplano, M. Franceschelli, K.H. Johansson, "Online distributed learning over random networks", Transactions on Automatic Control (under review)

Conclusions and future directions

Future directions

We will investigate the following properties of the DOT-ADMM for the specific protocols we have presented:

- Robustness to asynchronous and noisy communications;
- Robustness to unreliable communications.

Moreover, we aim at:

- · Formally characterize the bound on the tracking error;
- Extend their applicability to open networks where agents may join and leave the network over time.

Diego Deplano

A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence

Thank you for your attention!

Diego Deplano

Email: diego.deplano@unica.it Webpage: https://sites.google.com/view/deplanodiego/