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Abstract— This paper addresses the problem of making a net-
work of cooperative agents more resilient against disconnections
due to link or node failure, or DoS cyber-attacks. We propose a
distributed protocol to let the network self-organize and main-
tain an approximate random k-regular graph topology, which
has interesting robustness properties. The proposed method can
be applied in a scenario where the agents communicate over
an internet protocol, limited to two-hop interactions, and can
log-in and log-out according to the framework of open multi-
agent systems. We provide a preliminary characterization of
the self-organization protocol, and a numerical validation with
a comparison with the state-of-art.

I. INTRODUCTION

In networks of collaborating agents, the pattern of inter-
action among the agents highly impacts the performance
of the network. A compelling model of the network is
drawn by graph theory: agents are modeled as nodes and
their interactions are modeled as edges between nodes, thus
constituting a graph. The properties of the graph modeling
the pattern of interactions among the agents are crucial for
characterizing several properties of the network, such as
resilience to perturbations [1], [2], controllability [3]–[5], and
feasibility of distributed algorithms [6], [7].

In several applications, multi-agent networks must deal
with perturbations such as sudden disconnections of agents
due to failures [8]–[10], or attacks carried out by malicious
agents [11]. Intuitively, one of the worst events that should be
avoided is the disconnection of the network into two or more
components, which impedes the flow of information through
the whole network. Several measures have been proposed in
the current literature to quantify how well connected a graph
is, which are mostly related to the number of nodes and edges
that should be removed to make the graph disconnected.
Some of the most established connectivity measures and
node ranking are the algebraic connectivity and the Fiedler
eigenvector [12], [13], the Kirchoff index [14], [15], the
edge/node expansion ratio [16], [17]. The magnitude of any
of these measures reflects the quality of connectivity of
a graph, and it has been employed for characterizing its
robustness and synchronizability [18].

Consequently, the design of algorithms to improve the
connectivity of a graph according to different connectivity
measures has recently attracted much attention [19]–[22]. A
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naive attempt is that of adding more edges to the graph,
which increases the connectivity of the graph but it is not
practically appropriate in several applications where each
edge represents some virtual or physical link between the
corresponding agents. Indeed, a high number of edges is
usually not the desired fact in different applications due
to higher costs, e.g., when the edges represent physical
communication channels [23], higher risk of ripple effect,
e.g., the propagation of fake news in a social network [24].

An interesting class of graphs that score high values
for several connectivity measures while maintaining a low
number of edges is the one of random regular graphs [17],
[25]. A graph is said to be k-regular if each node has a
number of incident edges (the degree) equal to k. A k-regular
graph is said to be random if it is selected uniformly at
random from the set of all k-regular graphs with the same
number of nodes. This motivated the seminal series of works
by [26]–[28] that led to a distributed protocol to transform
any connected graph into a connected random regular graph
with a similar number of edges as the initial graph.

The main contribution of this paper is a novel distributed
protocol to reshape a graph into a random k-regular graph in
open multi-agent networks, wherein agents may leave or join
the network at any time. The main novelty of the proposed
protocol is that it allows to arbitrarily choose the degree k
of the regularity of the graph independently from the initial
average degree m, in contrast to the approach of [28] where
k is restricted to the range [m,m+ 2].

Structure of the paper. The notation used in this paper
along with some useful preliminaries are given in Section II.
Section III first formalize the problem under study and then
describes the proposed algorithm to solve the problem. In
Section IV numerical simulations are provided which cor-
roborate the validity of the proposed algorithm and its better
performances with respect to the state-of-art. Concluding
remarks and future perspectives are given in Section V.

II. PRELIMINARIES

We consider networks of multiple agents whose pat-
tern of interaction/communication is modeled by a graph
G = (V, E), where V = {1, . . . , n} is the set of nodes,
representing the agents, and E ⊆ V × V is the set of
edges connecting the nodes, representing the point-to-point
communication channels between the agents. We assume
networks to be undirected, i.e., if (i, j) ∈ E and (j, i) ∈ E ,
and therefore adjacency matrices are symmetric.

A path between two nodes i, j ∈ V is a sequence of
consecutive edges πij = (i, p), (p, q), . . . , (r, s), (s, j) where



each successive edge shares a node with its predecessor. An
undirected graph G is said to be connected if there exists
a path πij between any pair of nodes i, j ∈ V . Nodes
i and j are said to be neighbors if there exists an edge
between them, i.e., (i, j) ∈ E . The set of neighbors of the
i-th node is denoted by Ni = {j ∈ V : (i, j) ∈ E}. We
consider graphs without self-loops, i.e., i ̸∈ Ni. Similarly,
the set of 2-hops neighbors of agent i is denoted by N 2

i ,
which includes only agents j such that there exists a path
πij between i and j of exactly 2 edges. The degree of a node
i is the number of neighbors and it is denoted by di = |Ni|,
where |·| denotes the cardinality of a set. Consequently, the
minimum, maximum and average degree of the graph G are
denoted by dmin(G) = mini∈V di, dmax(G) = maxi∈V di
and d̄(G) =

∑
i∈V di/n, respectively. The degree matrix

is D = {di,j} ∈ Rn×n, which is diagonal and such that
di,i = di. The Laplacian matrix of graph G is defined as
L = D −A ∈ Rn×n, and its smallest nonzero eigenvalue is
called the algebraic connectivity and is denoted by λ2(G).

III. DISTRIBUTED SELF-ORGANIZATION OF RANDOM
k-REGULAR GRAPHS

We consider networks of agents that are allowed to estab-
lish or close connections between themselves, their neigh-
bors, and their 2-hop neighbors. The knowledge of the 2-hop
neighborhoods is a standard assumption in many distributed
algorithm and protocols such as constructing structures
[24,6], improved routing [20], broadcasting [9], and channel
assignment [3]; indeed, it can be directly retrieved from the
neighbors without causing any delay in the execution of the
algorithm. The time is considered to be discretized such that
each time step is indexed by t = 1, 2, 3, . . ., and the number
of the agents, as well as their interconnections, can change
at each time step t.

These networks can be made more resilient to pertur-
bations by a proper design of the graph describing the
interconnection of the agents. In particular, the class of
random regular graphs has been pivotal in the analysis of
robust or resilient multi-agent systems, due to the intrinsic
uniform connectivity they ensure throughout the network.

Definition 1 A graph G = (V, E) is said to be k-regular,
with k ∈ N, if each node has exactly k neighbors, i.e.,

∃k ∈ N : |Ni| = k.

Definition 2 A k-regular graph G = (V, E) is said to be
random if it is selected uniformly at random from all k-
regular graphs with the same number of nodes.

Due to the time-varying nature of the problem under study,
a network with a regular graph is likely to have a node with
degree different from all others, thus arousing the need of
defining the subclass of approximate regular graphs.

Definition 3 A k-regular graph is said to be approximate if
there is only one node with degree different from k.

The problem of interest in this work is that of increase
the resiliency of a network against perturbations by providing

a local and distributed procedure to iteratively reshape any
connected graph toward a random (approximate) k-regular
graph, despite the time-varying number of agents. Our only
working assumption is that the initial network is connected,
while we do not make any assumption on the final degree k
of the network, which is a completely arbitrary parameter.

Assumption 1 The initial network’s graph is connected.

A. Proposed distributed protocol

The proposed estimation methodology is detailed in Al-
gorithm 1, which envisages three potential operations/rules
described next. At each time step, each agent i ∈ V is ran-
domly activated and performs one of these rules according to
the value of its own degree di and the desired degree k of the
final approximate random k-regular graph. It is not necessary
that all agents are sequentially activated at each time step,
which would require some additional coordination among the
agents, but their operations must not be concurrent.

• Remove edges if di > k (Rule 1). Agent i selects at
random an agent j from its neighborhood Ni, such that
the degree degree dj of agent j is greater than k. If there
is such agent j, then agent i closes the connection with
agent j, i.e., edge (i, j) is removed from E ; otherwise,
no action is taken.

• Add edges if di < k (Rule 2). Agent i selects at random
an agent j from its 2-hop neighborhood N 2

i , such that

Algorithm 1: Distributed Formation and Mainte-
nance of Random k-Regular Graphs

Input: Degree k ∈ N.
at each step t = 1, 2, 3, . . . do

G = (V, E) is the current graph
Va ⊆ V is the set of randomly activated nodes
each node i ∈ Va does

Compute N>
i,k = {j ∈ Ni : dj > k}

Compute N<
i,k = {j ∈ N 2

i \ Ni : dj < k}
if di > k and N>

i,k ̸= ∅ then // Rule 1

Select j ∈ N>
i,k at random

Remove edge (i, j) from E
else if di < k and N<

i,k ̸= ∅ then // Rule 2

Select j ∈ N−
i,k at random

Add edge (i, j) to E
Compute N≥

i,k = {j ∈ Ni : dj ≥ k}
if di ≥ k and N≥

i,k ̸= ∅ then // Rule 3

Select j ∈ N≥
i,k at random

Select p ∈ Ni \ {j} at random
Select q ∈ Nj \ {i} at random
if (i, q) /∈ E and dq < k then // Rule 3a

Add edge (i, q) to E
Remove edge (i, j) from E

else if (i, q), (j, p) /∈ E then // Rule 3b

Add edges (i, q), (j, p) to E
Remove edges (i, p), (j, q) from E



(a) Initial graph. (b) Agent 1 executes Rule 2 selecting agent 7. (c) Agent 2 executes Rule 1 selecting agent 4.

Fig. 1: Example of Algorithm 1 execution that leads to a disconnected network.

agent j is not in its neighborhood Ni and its degree
dj is smaller than k. If there is such agent j, then it
establishes the connection with agent j, i.e., edge (i, j)
is added to E ; otherwise, no action is taken.

• Move edges if di ≥ k (Rule 3). Agent i selects at
random an agent j from its neighborhood Ni, such that
the degree dj of agent j is greater or equal to k. If there
is such agent j, then both agents i and j select at random
two agents p and q from their respective neighborhoods,
excluding themselves; otherwise, no action is taken.
Two cases are of interest:
- (Rule 3a). If agents i and q are not linked and the
degree dq of agent q is less than k, then:

1) the connection between agents i and j is closed,
i.e., edge (i, j) is removed from E ;

2) the connection between agents i and q is estab-
lished, i.e., edge (i, j) is added to E .

- (Rule 3b). Otherwise, if agents i and q as well as
agents j and p are not linked, then:

1) the connections between agents i, p and j, q are
closed, i.e., edges (i, p), (j, q) are removed from E ;

2) the connections between agents i, q and j, p are
established, i.e., edges (i, q), (i, p) are added to E .

B. Characterization of Algorithm 1

In this preliminary work, we do not provide a rigorous
theoretical characterization of Algorithm 1, but we do state
some preliminary results regarding its convergence to a
random regular graph while providing some proof sketches.
For the sake of readability, we first introduce these results,
along with their statements, and postpone the proof sketches
to the next subsections.

The first result characterizes the behavior of a metric that
measures the distance of a given network to a random regular
graph. Such metric, whose inputs are the network G and the
degree k, is given by

f(G, k) = ∥dmax(G)− k∥+ ∥k − dmin(G)∥, (1)

where, we recall, dmax and dmin denote the maximum and
the minimum degree among all agents in the network. We
drop the input k and use the notation f(G) whenever the
degree k is clear from the context.

Theorem 1 Consider a network with a fixed number of
agents that implements Algorithm 1. If the graph is initially
connected and remains connected thereafter, then:

i) The metric f(G) is non-increasing.

ii) At each time step there exists a set of agents that
executing Algorithm 1 makes the metric f(G) decrease.

The second result concerns the convergence of Algorithm
1 toward a random k-regular graph, possibly approximate.

Theorem 2 Consider a network with a time-varying number
of agents that implements Algorithm 1. At every step t0 such
that the number of agents remains constant for a sufficiently
large window of time T , if the graph is connected for all
t ∈ [t0, t0 + T ], then the graph converges for t → t0 + T to
an approximate k-regular graph.

We emphasize that Algorithm 1 is suitable for open
networks, i.e., it ensures convergence to a time-varying
approximate k-regular graph even when the number of agents
within the network changes. We claim that once the graph
has been reorganized into an approximate k-regular graph,
the algorithm uniformly randomizes this graph during its
execution thus leading to an approximate random k-regular
graph. In this preliminary work we provide no formal proof
for this fact.

Conjecture 1 The probability of existence of an edge be-
tween any pair of nodes, after a sufficiently long time in
which no node enters or leaves the network during the
execution of Algorithm 1 is uniform.

As a final remark, we explicate that the execution of
Algorithm 1 does not ensure that the network remains
connected. This is likely the case when the initial graph has
few nodes and the degree k is chosen too small. Next, we
discuss a simple example that shows this behavior.

Consider a network of 8 agents as in Fig. 1(a) and choose
k = 3. Assume that during the execution of the algorithm
is first selected agent 1 such that d1 = 2 < 3. Therefore, it
executes Rule 2. If it selects agent 7 and adds the edge (1, 7),
the resulting graph is the one depicted in Fig. 1(b). Assume
now that agent 2 is activated with d2 = 4 > 3. Therefore, it
executes Rule 1. If it selects agent 4 and removes the edge
(1, 4), the resulting graph is depicted in Fig. 1(c), which is
a disconnected graph. This example shows that Algorithm 1
does not ensure to keep the graph connected. However, we
conjecture that the probability of disconnection is inversely
proportional to the algebraic connectivity and the chosen
degree. Thus, if the initial algebraic connectivity is large
enough, greater than 1, the algorithm won’t disconnect the
graph. We next formulate this conjecture, whose proof is
postponed to future works.



Conjecture 2 Higher values of the algebraic connectivity
and of the chosen degree k implies lower disconnection prob-
ability while running Algorithm 1. Moreover, the probability
of getting the graph disconnected goes to zero as the number
of nodes and the degree k goes to infinity.

Remark 1 The connectivity of the network can be preserved
by modifying Rule 1 as follows: agent i can close the
communication with agent j only if j ∈ N 2

i . However, this
could slows down the convergence rate of the algorithm.

C. Sketch of the proof of Theorem 1

We proceed by performing an exhaustive analysis of all
cases that may occur during the execution of Algorithm 1.

1) It is activated an agent i with degree di > k

• Rule 1 may be executed. If this happens, the degree of
agent i and the selected agent j are both strictly greater
than k. Thus, the removal of the edge between these two
agents implies that their degree reduces by 1 but remains
greater or equal to k. This ensures that the metric
f(G) is non-increasing. Moreover, if one between these
agents is the unique agent with maximum degree, then
dmax(G) decreases and dmin(G) remains unaltered, thus
f(G) decreases.

• Rule 2 is not executed.
• Rule 3a may be executed. If this happens, the degree of

agent i is strictly greater than k, the degree of agent j
is greater or equal to k and the degree of agent q is
smaller or equal than k − 1. Therefore, the addition of
the edge between i and q and the removal of the edge
between nodes i and j imply that the degree of agent
i remains unaltered, the degree of agent j decreases
but remains greater or equal than k − 1, while the
degree of agent q increases but it remains smaller or
equal to k. This ensures that the metric f(G) is non-
increasing. Moreover, if agent j is the unique agent
with maximum degree or agent q is the unique agent
with minimum degree, then either dmax(G) decreases
or dmin(G) increases, while keeping unaltered the other
one, thus f(G) decreases.

• Rule 3b may be executed. If this happens, the degree of
agent i is strictly greater than k, the degree of agent j is
greater or equal to k, and the degree of agents p and q
are smaller or equal than k− 1. Therefore, the addition
of edges between nodes i, q and j, p and the removal
of edges between i, p and j, p imply that the degree of
all these nodes remains unaltered. This ensures that the
metric f(G) is non-increasing.

2) It is activated an agent i with degree di < k

• Only Rule 2 may be executed. If this happens, the de-
gree of agent i and the selected agent j are smaller
or equal to k − 1. Therefore, the addition of the edge
between these two agents implies that their degree
increases by 1 but remains smaller or equal to k.
This ensures that the metric f(G) is non-increasing.
Moreover, if one between these agents is the unique

agent with minimum degree, then dmin(G) will be
increased and dmax(G) remains unaltered, thus f(G)
decreases.

3) It is activated an agent i with degree di = k

• Only Rules 3a and 3b may be executed. If this hap-
pens, the same arguments for the case di > k hold.

Conclusion: It has been proved that the execution of any
rule by any agent in the network does not increase the
metric f(G) in eq. (1), thus proving statement i). It has
been shown that if all the agents with the maximum degree
execute one between Rule 1 or Rule 3a then the metric
f(G) decreases. The same occurs also when all agents with
minimum degree execute Rule 2. This proves that f(G) is
eventually decreasing, i.e., there always exists a set of agents
that executing Algorithm 1 led to a decrease of the metric
f(G), thus proving statement ii).

D. Sketch of the proof of Theorem 2

Each graph at time t+1 generated by Algorithm 1 depends
only on the graph at time t and not on the graphs before t.
Let G0 be the graph at the generic instant of time t0 and let
Gt be the graph at time t ≥ t0. Assume that the initial graph
G0 is connected but it is not an approximate k-regular graph,
and assume also that there exists T such that all graphs Gt

with t ∈ [t0, t0+T ] are connected and the number of agents
does not change.

By Theorem 1 the metric f(Gt) eventually decreases until
one of the following cases occurs:

1) dmin(G) = k and dmax(G) > k.
In this case, the degree of each agent i ∈ V is such that

di ≥ k, which may only execute one of the following rules:
• Rule 1 if di > k: i-th agent’s degree decreases.
• Rule 3b if di = k: i-th agent’s degree remains the

same.
While the degree of any agent i with degree equals to k
remains constant at each step due to Rule 3b, the degree of
any agent i with degree greater than k will eventually reduce
until there are at least two of them due to Rule 1. If only one
agent is left with degree greater than k, then node i cannot
execute any rule and its degree remains stuck at di > k. If
instead, the execution of Rule 1 reduces the degree of the last
two nodes with degree k + 1, then all nodes achieve degree
equal to k. Therefore, the graph converges to a k-regular
graph, possibly approximate.

2) dmin(G) < k and dmax(G) = k.
In this case, the degree of each agent i ∈ V is such that

di ≤ k and it may only execute one of the following rules:
• Rule 2 if di < k: i-th agent’s degree increases.
• Rule 3 if di = k: i-th agent’s degree remains the same.
By similar reasoning as to the previous case, we conclude

that the graph converges to a k-regular graph, possibly
approximate.

3) dmin(G) = dmax(G) = k.
In this case, the graph is already a k-regular graph, and

only Rule 3b can be executed, which does not modify the
degree of any agent.



(a) Initial graph. (b) final graph via Algorithm 1 (c) final graph via algorithm in [28].

Fig. 2: Simulation results of Section IV-A.
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Fig. 3: This figure shows the time-evolution of (a) the average
degree, (b) the metric in eq. (1), (c) the algebraic connectiv-
ity, (d) maximum/minimum degree, during the execution of
(red) Algorithm 1 and (blue) algorithm in [28].

Conclusion: We have shown that if the number of nodes
remains constant for a sufficiently large time window T , then
Algorithm 1 eventually produces a k-regular graph for t →
t0 + T , possibly approximate.

IV. NUMERICAL SIMULATIONS

In this section, we provide two different simulations that
validate the functioning of the proposed algorithm. First, we
consider the case when the agents are not allowed to join
or leave the network, and we provide a comparison with
the protocol proposed by [28]. Secondly, we consider the
scenario of an open multi-agent system.

A. Closed networks and comparison with the state-of-art

We assume that the initial graph G0 is connected and
consists of n = 100 agents, with average degree equal to
d̄(G0) = 3.1 which is depicted in Fig 2(a). In order to
provide a fair comparison, the goal degree is selected to be
k = 4, such that the protocol proposed in [28] is feasible
and results in a random m-regular graph with m ∈ {4, 5}.
Indeed, by looking at Figs. 2(b)-(c) it can be verified that
the final networks achieved by Algorithm 1 and algorithm
in [28] are both regular with degree k = m = 4.
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Fig. 4: This figure shows the time-evolution of (a) the average
degree, (b) the metric in eq. (1), (c) the algebraic connectiv-
ity, (d) maximum/minimum degree, during the execution of
Algorithm 1 in the case of open networks.

In Fig. 3(a) we compare the variation of the average degree
of the network while running both algorithms. Fig. 3(a)
reveals that the rate of convergence of Algorithm 1 is
way higher since a steady state is reached in less than 30
steps, instead of the 3000 steps required by the algorithm
in [28]. Theoretical characterization of the convergence rate
of Algorithm 1 is postponed to future investigations.

Fig. 3(b) illustrates the time evolution of the metric in
eq. (1) evaluated at each step while running both algorithms.
According to Theorem 1, the metric shows a non-increasing
behavior, furthermore, it eventually decreases until the op-
timum goal value is reached. On the contrary, the metric
evolution is not monotonic in the case of algorithm in [28].

Moreover, in Figs. 3(c)-(d) we also plot the algebraic
connectivity and the maximum/minimum degree among the
nodes for both algorithms. Our final remark concerns the
algebraic connectivity of the graph, whose value in the
case of random k regular graphs is well-approximated
by λ2 ≈ k − 2

√
k − 1, and the result is tighter as the

number of nodes increases. In our case it holds that
k − 2

√
k − 1 ≈ 0.536. Indeed, both algorithms construct

graphs with algebraic connectivity close to this value, but
Algorithm 1 achieves it in a smaller time.



B. Open networks

We consider the same set-up of the previous example:
the initial graph G0 is connected and depicted in Fig. 2(a),
it consists of n = 100 agents and its average degree is
d̄(G0) = 3.1. The join/leave events occur as described next:

• At t = 100 an agent leaves the network. Since the
degree of the neighbors of the departing agent is
k − 1 = 3, such event implies that the minimum degree
of the network reduces, and thus the metric in eq. (1)
increases when it occurs.

• At t = 200 an agent joins the network. Since the agent
joins with degree equal to k = 4, and since the degree
of its neighbors increases to k = 5, such event implies
that the maximum degree of the network increases, and
thus the metric in eq. (1) increases when it occurs.

The results of the simulation are shown in Fig. 4. From
Fig. 4(a), one can appreciate that the average degree of
the network eventually converges to the desired k whenever
an agent joins or leave the network. However, these events
produce a temporary deviation from the k-regular graph. This
can be appreciated by looking at Fig. 4(b) which shows that
the metric in eq. (1) increases in correspondence of these
events, due to the changes of the maximum/minimum degree
shown in Fig. 4(d). The time evolution of the algebraic con-
nectivity depicted in Fig. 4(c) does not seem to be affected
by these events while remaining close to the expected value.

V. CONCLUSIONS

In this paper we have presented a novel algorithm to reor-
ganize in a distributed way a random approximate k-regular
graph which can be executed in open multi-agent networks.
The algorithm provides a set of local interaction rules to
be performed by the agents to cut, add and move connection
links with their 1-hop and 2-hop neighbors, thus leading to a
randomized time-varying approximated k-regular graph. This
kind of networks possess a number of properties that make
them robust and resilient to sudden disconnections of links
or nodes, possibly due to cyberattacks.
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[15] B. Zhou and N. Trinajstić, “On resistance-distance and kirchhoff
index.,” Journal of mathematical chemistry, vol. 46, no. 1, 2009.

[16] M. S. Pinsker, “On the complexity of a concentrator,” in 7th
International Telegraffic Conference, Citeseer, vol. 4, 1973.

[17] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6, no. 2,
1986.

[18] A. H. Dekker and B. D. Colbert, “Network robustness and graph
topology,” in Proceedings of the 27th Australasian conference on
Computer science-Volume 26, 2004.

[19] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, “Improving
network robustness by edge modification,” Physica A: Statistical
Mechanics and its Applications, vol. 357, no. 3-4, 2005.

[20] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and
H. J. Herrmann, “Mitigation of malicious attacks on networks,”
Proceedings of the National Academy of Sciences, vol. 108, no. 10,
2011.

[21] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Ran-
domness conductors and constant-degree lossless expanders,” in
Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, 2002.

[22] M. Morgenstern, “Existence and explicit constructions of q+ 1
regular ramanujan graphs for every prime power q,” Journal of
Combinatorial Theory, Series B, vol. 62, no. 1, 1994.

[23] L. Blume, D. Easley, J. Kleinberg, R. Kleinberg, and É. Tardos,
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