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Abstract— In this paper we propose a distributed protocol
for multi-agent systems to estimate and track changes to the
diameter and radius of a time-varying network, as well as
the eccentricity of each agent within it. The main strengths
of the proposed protocol are its finite-time convergence and
robustness to re-initialization, i.e., if there are changes in the
network topology or in the agents’ states during the protocol
execution then it does not need to be re-initialized to converge to
the correct estimation at the steady state. The expected error
accuracy of the protocol can be traded-off by increasing the
size of locally exchanged messages. We provide a theoretical
characterization of the expected steady state error and some
numerical simulations.

I. INTRODUCTION

In networks of collaborating agents, the properties of their
communication network topology are crucial. An effective
model of the network is drawn by graph theory: each agent
is modeled as a node and the interaction between two
agents is modeled as an edge, thus constituting a graph. The
properties of the graph modeling the communication network
among the agents highly influences the behavior and the
performance of almost any distributed algorithm executed
by the network. Examples of distributed algorithms which
estimate the spectrum and other graph properties such as
controllability, observability and the Fiedler vector can be
found in [2], [6], [7].

Among the many metrics that have been proposed to
characterize the influence of the agents in the network [8],
[17], one of particular significance is the eccentricity of a
node, which is defined as the maximum distance to any other
other node in the graph. This metric allows to easily define
two important features of the graph, namely the diameter
and radius of the network, which are formally equivalent
to the maximum and minimum eccentricities among all
nodes, respectively. Possible applications of such metrics are
straightforward, such as selection of agents for maximizing
the spread of influence in social networks [11], optimal
coordination of cellular networks [13], maintaining a given
efficiency in wireless networks [5], implementing a stopping
criterion in distributed algorithms [12], and many others.

In the literature, much effort has been spent to go beyond
centralized approaches [22] by focusing on the design of par-
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allel [19] and distributed computation of these graph parame-
ters, by means of flooding techniques [1], [18] and resorting
to max-consensus protocols [9], [16]. The latter approach
is particularly interesting since it allows to compute the
desired parameters without the need of disclosing the identity
of the agents within the networks, a framework known as
anonymous networks [21]. However, these algorithms inherit
the main drawback of max-consensus protocols: they can not
be applied to time-varying networks because a change in the
network or in the state of the agents during the algorithm
execution requires to reinitialize the algorithm in the whole
network, a feature not suitable to be implemented in large
scale networks.

The main contribution of this paper is a novel distributed
protocol for anonymous multi-agent networks which esti-
mates and tracks the eccentricity of each node, diameter
and radius of a graph modelling a time-varying network.
The protocol exploits only anonymous local interactions
among agents and is robust to re-initialization, thus it is
suitable to be implemented in large time-varying networks.
We characterize the steady-state estimation error and the
algorithm convergence time.

The main novelty with respect to the current literature is
the ability of the protocol to track changes in the graph pa-
rameters without the need to be re-initialized in the network.

This paper is organized as follows. In Section III we
formulate the graph parameters tracking problem along with
some working assumptions, then we present the proposed
protocol and discuss it in plain words. In Section IV we
characterize the steady state estimation error. Numerical sim-
ulations are presented in Section V and concluding remarks
are given in Section VI.

II. NOTATION AND PRELIMINARIES

We denote with R and N the sets of real and natural
numbers respectively. Moreover, we denote with R+ and N+

their restriction to strictly positive numbers.

A. Multi-Agent systems

A multi-agent system (MAS) consists of a network of
agents modeled as dynamical systems interacting among
each other. The network is modeled by an undirected graph
G(k) = (V,E(k)) which represents the pattern of interac-
tions among the agents at time k ∈ N: V ⊂ N is the set
of nodes modeling the agents and E(k) ⊆ V × V is the set
of edges modeling interactions at time k between them. The
total number of nodes in the network is constant and equal
to n = |V |, where | · | denotes the cardinality of a set.



A path between two nodes i and j in a graph is a sequence
of consecutive edges πij = (i, p), (p, q), . . . , (r, s), (s, j)
where each successive edge shares a node with its prede-
cessor. An undirected graph G(k) is said to be connected if
there exists a path πij between any pair of nodes i, j ∈ V .
The distance between two nodes i, j ∈ V at time k is denoted
as distij(k) and it is defined as the length (number of edges)
of the shortest path between nodes i and j.

The eccentricity of a node i ∈ V at time k is denoted as
ei(k) and it is defined as the maximal distance from i of any
other node,

ei(k) = max
j∈V

distij(k).

The diameter of graph G(k) at time k is denoted as d(k) and
it is defined as the maximal eccentricity among the nodes,

d(k) = max
i∈V

ei(k).

The radius of graph G(k) at time k is denoted as r(k) and
it is defined as the minimal eccentricity among the nodes,

r(k) = min
i∈V

ei(k).

Agents i and j are said to be neighbors at time k if
there exists an edge between i and j, i.e., (i, j) ∈ E(k)
or equivalently (j, i) ∈ E(k). At any time k, the set
of neighbors of the i-th agent is denoted as Ni(k) =
{j ∈ V : (i, j) ∈ E(k)}: it represents the agents in the graph
sharing a point-to-point communication channel with agent
i and interacting with it at time k. For sake of simplicity, we
denote N ◦i (k) = Ni(k) ∪ {i}. Similarly, the set of h-hops
neighbors at time k is denoted as N h

i (k) and it comprises
the set of agents j which share a path πij between i and j
and distij ≡ h. Furthermore, N h(k) = {i ∈ V : ei(k) = h}
denotes the set of all nodes with eccentricity equal to h.

B. Static and dynamic max-consensus protocols

Consider a MAS wherein each agent i ∈ V with state
si(k) ∈ R has access to a reference signals vi(k) ∈ R.

The max-consensus problem consists in the design of a
local interaction rule enabling the agents’ state to converge
to the maximum among the reference signals. If the ref-
erence signals are assumed to be constant over time, i.e.,
v(k) = v(0) for all k ∈ N+, the problem is solved by the
max-consensus protocol protocol

si(k) = max
j∈N◦

i

{sj(k − 1)}, si(0) = vi(0), (1)

which has been proved to converge in finite time and with
zero error [10], [14], [15], [20]. On the other hand, if
the reference signals are assumed to be time-varying, the
problem can be approximately solved by the dynamic max-
consensus protocol presented by Deplano et al. [3], [4],

si(k) = max
j∈N◦

i (k−1)

{
sj(k − 1)− α, vi(k)

}
. (2)

which has been proved to converge in finite time and with
bounded error.

III. DISTRIBUTED TRACKING OF GRAPH PARAMETERS

A. Problem statement

We consider a network of n agents which synchronously
gather state information from their neighbors and update their
state at discrete instants of time. Time is divided in epochs,
or iterations, indexed by the positive integer k ∈ N+.

At each iteration k the pattern of communication among
the agents may change but the set of agents does not
change. Thus, the network of agents can be effectively
represented by a graph G(k) = (V,E(k)) where V is the
time-invariant set of nodes, representing the n = |V | agents,
and E(k) ⊆ {V × V } is the time-varying set of edges,
representing the interactions among agents. We assume that
there is a dwell time between two consecutive changes in
the network topology, as stated in the next assumption.

Assumption 1 There exists a minimum dwell time Υ ∈ N+

between two consecutive changes of the graph G(k).

In this paper we consider the problem of dynamically
tracking the diameter d(k), the radius r(k) of the network,
as well as the eccentricities ei(k) of the agents, which are
time-varying parameters. We propose a local interaction rule
that we call the EDR Protocol, given in the next page,
to distributedly solve this problem within the framework
of anonymous multi-agent networks, i.e., networks where
information about the identity of the agents must be kept
hidden.

B. Proposed estimation protocol

The proposed estimation methodology is detailed in the
EDR Protocol, which envisages three operations/steps, de-
scribed next. In the reminder of this section, we use the
notation a→ b to denote that a tracks the value b.

1) Initialization (lines 1 − 6): The i-th agent selects
L ∈ N random numbers ui`(0) ∈ [0, 1] with ` = 1, . . . , L
with uniform distribution and initialize its state variables
xi`, yi`, zi` ∈ R according to

xi`(0) = ui`(0), yi`(0) = ui`(0), zi`(0) = 0

2) Execution - Distances tracking (lines 8 − 16): The
strategy of this step makes use of an ingenious combination
of static and dynamic max-consensus protocols in eq. (1)-
(2). The following explanation has to be intended for each
` = 1, . . . , L.

Each variable xi` ∈ R runs the max-consensus protocol
in eq. (1) over the set [u1`, . . . , un`] and thus it tracks the
maximum of the set with zero error,

xi` → max
i∈V

ui` = uj∗` `,

where
j∗` = argmax

j∈V
uj`. (3)

Assuming no quantization of the real numbers, the maxi-
mum number uj∗` ` is ensured to be unique with probability
one by the continuity of the distribution. Thus, the update



law in line 12 for ui` ensures that the signals will eventually
be set to −∞, unless i = j∗.

Each variable yi` ∈ R runs the dynamic max-
consensus protocol in eq. (2) over the set of numbers
[−∞, . . . , uj∗` `, . . . ,−∞] and thus it tracks the maximum
of the set up to an error, which is characterized in Lemma 2
in the next section,

yi` → uj∗` − α · distij∗ .

The agents i can now infer its distance distij∗` to the node
j∗` attaining the maximum value by

εi` =
|xi` − yi`|

α
→ distij∗ .

Each variable zi` ∈ R runs the dynamic max-consensus
protocol in eq. (2) over the set of reference signals
[ε1`, . . . , εn`], whose maximum tracks the maximum distance
from agent j∗` to all other agent in the network, in fact,

max
i∈V

εi` → max
i∈V

distij∗ = disti∗` j∗` (4)

with
i∗` = argmax

i∈V
distij∗` . (5)

Therefore, variable zi` tracks the value in eq. (4) up to an
error, which is characterized in Lemma 2 in the next section,

zi` → disti∗` j∗` − α · distii∗`

In other words, the variable zi` tracks the maximum dis-
tance from any node in the network and the node attaining the
maximum value, up to an error proportional to its distance
to the node attaining such maximum distance.

3) Execution - Parameters inference (lines 17− 20): The
i-th agent considers as an estimation of its eccentricity its
maximum distance to all agents attaining a maximum,

êi = max
`=1,...,L

εi`(k)→ max
`=1,...,L

distij∗` ,

Then, by assuming the parameter α ∈ R+ to be small
enough, it considers as an estimation of the network diameter
the maximum distance of any agent in the network to all
agents attaining a maximum,

d̂i = max
`=1,...,L

⌈
zi`
⌉
→ max

`=1,...,L
disti∗` j∗` .

Finally, it considers as an estimation of the network radius
the minimum distance of any agent in the network to all
agents attaining a maximum,

r̂i = min
`=1,...,L

⌈
zi`
⌉
→ min

`=1,...,L
disti∗` j∗` .

IV. CONVERGENCE ANALYSIS OF THE EDR PROTOCOL

In this section we provide the characterization of the
expected error on the estimation provided by the EDR
Protocol. But first, we need two preliminary lemmas.

The first lemma concerns the specific steady state reached
by a network running the dynamic max-consensus protocol
in eq. (2) in the case of constant reference signals.

EDR Protocol : Distributed tracking of Eccentrici-
ties, Diameter, and Radius in time-varying networks

(Input): Tuning parameters α ∈ R+ and L ∈ N
(Output): êi(k), d̂i(k), r̂i(k) ∈ R for i ∈ V .

1 (Initialization): for ` = 1, . . . , L each node i does
2 Select numbers with uniform distribution
3 ui`(0) ∼ U(0, 1)

4 Initialize state variables according to
5 xi`(0) = ui`(0), yi`(0) = ui`(0), zi`(0) = 0

6 Send xi`(0), yi`(0), zi`(0) to its neighbors

7 (Execution): for k = 1, 2, 3, . . . each node i does
8 for ` = 1, . . . , L it does
9 Gather xj`(k − 1), yj`(k − 1), zj`(k − 1),

from its neighbors j ∈ Ni(k − 1)

10 Update its state variables according to

11 xi`(k) = max
j∈N◦

i (k−1)

{
xj`(k − 1)

}
12 ui`(k) =

{
−∞ if xi`(k) > xi`(k − 1)

ui`(k − 1) otherwise
13 yi`(k) = max

j∈N◦
i (k−1)

{
yj`(k − 1)− α, ui`(k)

}
14 εi`(k) =

|xi`(k)− yi`(k)|
α

15 zi`(k) = max
j∈N◦

i (k−1)

{
zj`(k − 1)− α, εi`(k)

}
16 Send xi`(k), yi`(k), zi`(k) to its neighbors

j ∈ Nj(k)

17 Estimate the graph parameters according to
18 êi(k) = max

`=1,...,L
εi`(k)

19 d̂i(k) = max
`=1,...,L

⌈
zi`(k)

⌉
20 r̂i(k) = min

`=1,...,L

⌈
zi`(k)

⌉

Lemma 1 Consider a network of n agents, each of which
has access to a constant vi ∈ R and updates its state si(k)
according to the dynamic max-consensus protocol in eq. (2)
and let k0 ∈ N be a generic instant of time.

If graph G is time-invariant, then there exists a conver-
cence time Tc ∈ N such that

Tc ≤ d+ max

{
0,

⌈
max
j∈V

sj(k0)

α
−max

j∈V
vj
α

⌉}
(6)

so that each agent reaches an equilibrium state for
k ≥ k0 + Tc such that

si(k) ≥ vj∗(k)− α · distij∗ , (7)

where
j∗ = argmax

j∈V
vj . (8)

Moreover, if vj∗ − vi > α · distij∗ holds for all i 6= j∗, then
the inequality holds strictly.

Proof: Let k0 ∈ N be a generic instant of time. By [3],



[4, Theorem 1], there exists a time

T ∗ ≤ max

{
0,

⌈
max
j∈V

sj(k0)

α
−max

j∈V
vj
α

⌉}
(9)

such that agent j∗ as in eq. (8) satisfies

sj∗(k) = vj∗ , k ≥ k0 + Tc. (10)

and sj∗(k) is the maximum among all agents at time k,

sj∗(k) ≥ sj(k), ∀j ∈ V. (11)

At time k∗ = k0+T ∗ we define the set of one-hop neighbors
of agent j∗, formally

V1 = {i ∈ V : (i, j∗) ∈ E} .
The dynamic max-consensus protocol in eq. (2) at k∗+1 for
the agents belonging to this set reduces to

si(k
∗ + 1) = max{vj∗ − α, vi}, ∀i ∈ V1

because they have state as in eq. (11) and agent j∗ as
neighbor with state as in eq. (10). By induction, define the
sets

V` =

{
i ∈ V : (i, j) ∈ E, j ∈

`−1⋃
s=0

Vs
}
, ` = 1, 2, . . . .

It can be noticed that the parameter ` denotes the distance
distij∗ of agent i ∈ V` \ V`−1 to agent j∗. Since the longest
shortest path between two nodes in a connected graph is at
most equal to its diameter d, then it holds that Vd = V and
thus for k ≥ k∗ + d it holds

si(k) = max{vj∗ − α · distij∗ , vi}, ∀i ∈ V.
This proves that for k ≥ k∗+d = k0 +T ∗+d, i.e., after the
convergence time Tc = T ∗ + d, which is therefore bounded
as in eq. (6) due to eq. (9), the steady state reached by the
network is lower bounded as in eq. (7) since the maximum of
two values is greater or equal than one of them. But clearly
if vi < vj∗ − α · distij∗ for all i 6= j∗ then it exactly holds
si(k) = vj∗(k)− α · distij∗(k).

The second lemma concerns the specific steady state
reached by a network running the EDR Protocol. But first,
we recall that for each ` = 1, . . . , L, the agents run two
instances of the dynamic max-consensus protocol, respec-
tively at variables yi` and zi` for i ∈ V , and we denote with
Tc(y, `) and Tc(z, `) their convergence time, according to
Lemma 1. More precisely, given a generic initial instant of
time k0 ∈ N, they are bounded by the following

Tc(y, `) ≤ d+max

{
0,max

j∈V

yj`(k0)

α
−max

j∈V

uj`(k0)

α

}
(12)

Tc(z, `) ≤ d+max

{
0,max

j∈V

zj`(k0)

α
−max

j∈V

εj`(k0)

α

}
(13)

Lemma 2 Consider a network which implements the EDR
Protocol under Assumption 1 and let k0 ∈ N be a generic
instant of time. If the tuning parameter α ∈ R+ satisfies

α < 1/d, (14)

and if the dwell time Υ is greater than the convergence time
Tc of all dynamic max-consensus protocols, i.e.,

Υ ≥ max
`=1,...,L

{Tc(y, `), Tc(z, `)} = T ′c, (15)

with Tc(y, `) and Tc(z, `) given in eq. (12)-(13), respectively,
then for k ∈ [k0 + Tc, k0 + Υ] it holds

êi(k) = max
`=1,...,L

distij∗` (k0), (16)

d̂i(k) = max
`=1,...,L

disti∗` j∗` (k0), (17)

r̂i(k) = min
`=1,...,L

disti∗` j∗` (k0). (18)

Proof: For each ` ∈ [0, L], each node i ∈ V runs at
variable xi` the popular (static) max-consensus protocol in
eq. (1), and thus is a standard result (cfr. [20]) that

xi`(k) = uj∗` `(k), k ∈ [k0 + d, k0 + Υ],

with j∗` as in eq. (3). For each ` ∈ [0, L], each node i ∈ V
runs at variable yi` the dynamic max-consensus protocol in
eq. (2) with reference signals ui`. By the update rule of ui` is
straightforward to conclude that for k ≥ k0 + d all numbers
are eventually set to −∞, unless the unique maximum1, i.e.,

uj∗` `(k) = uj∗` `(k0), ui`(k) = −∞, ∀i 6= j∗` .

Since the distance uj∗` `(k)−ui`(k) is infinite, then Lemma 1
holds strictly and for k ∈ [k0 + Tc(y, `), k0 + Υ] it follows

yi`(k) = uj∗` `(k)− α · distij∗` (k) = xi`(k)− α · distij∗` (k)

Therefore, the estimation of the eccentricity converges to

êi(k) = max
`=1,...,L

εi`(k) = max
`=1,...,L

|yi`(k)− xi`(k)|
α

= max
`=1,...,L

distij∗` (k), ∀k ∈ [k0 + Tc(y, `), k0 + Υ],

thus proving the veracity of eq. (16). For each ` ∈ [0, L], each
node i ∈ V runs at variable zi` the dynamic max-consensus
protocol in eq. (2). The variable zi` tracks the value

max
i∈V

εi`(k) = max
i∈V

distij∗` (k) = disti∗` j∗` (k)

with i∗` as in eq. (5). Thus, by Lemma 1, for k ∈ [k0 +
max{Tc(y, `), Tc(z, `)}, k0 + Υ] it holds

zi`(k) ≥ disti∗` j∗` (k)− α · distij∗` (k).

By eq. (14), it holds
⌈
−α · distij∗` (k0)

⌉
= 0 and

⌈
zi`(k)

⌉
=

disti∗` j∗` (k). Thus, the diameter estimation converges to

d̂i(k) = max
`=1,...,L

⌈
zi`(k)

⌉
= max
`=1,...,L

disti∗` j∗` (k)

and the radius estimation converges to

r̂i(k) = min
`=1,...,L

⌈
zi`(k)

⌉
= min
`=1,...,L

disti∗` j∗` (k),

thus proving eq. (17)-(18). The above considerations are true
if Υ ≥ max{Tc(y, `), Tc(z, `)}, completing the proof.

1Assuming no quantization of the real numbers, the maximum is unique
with probability one, by the continuity of the distribution.



Next, we discuss the expected error at the steady state
of the estimations of the eccentricities, diameter and radius
between any two consecutive changes of the network topol-
ogy. In other words, we consider time windows [k0, k0 + Υ]
such that Υ ≥ T ′c where k0 ∈ N is a generic initial time at
which the network changes, T ′c is the convergence time of
the protocol in eq. (15) and Υ is the dwell time before a new
change may occur. The parameters of interest are constant
over these time windows and this allows to provide a precise
characterization of the expected errors in the next theorem.

Theorem 1 Consider the scenario of Lemma 2. Then, for
all k ∈ [k0 + T ′c, k0 + Υ] the expected estimation errors of
the EDR protocol are:

E[ei(k)− êi(k)] =

ei∑
ε=1

(
1−

∑ei
h=ε |N h

i (k)|
|V |

)L
(19)

E[d(k)− d̂i(k)] =

d∑
δ=r+1

(
1−

∑d
h=δ |N h(k)|
|V |

)L
(20)

E[r̂i(k)− r(k)] =

d−1∑
ρ=r

(
1−

∑ρ
h=r |N h(k)|
|V |

)L
(21)

Sketch of the Proof : We provide next a sketch of the
proof for the expected error on the eccentricities. First of
all, one needs to compute the probability that the esti-
mated eccentricity greater or equal than a certain threshold
ε ∈ {1, . . . , ei}, which is given by

P[êi ≥ ε] = 1−
(

1− |N
ei
i |
|V |

)L
.

The expected error value can be calculated by multiplying
each of the possible outcomes by the probability each
outcome will occur and then summing all of those values,

E[ei − êi] = ei − E[êi] = ei −
ei∑
ε=1

ε · P[êi = ε].

The probability of the event êi = ε can be computed
by computing the probability of event êi ≥ ε and then
subtracting the probability of event êi ≥ ε + 1. This is
possible since the the events êi = ε for any ε ∈ {1, . . . , ei}

0 50 100 150 200 250 300
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E[d− d̂i]
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E[r̂i − r]
r̂i − r

Fig. 1. Expected error and actual error for increasing values of L in a
random network of n = 300 nodes.

are independent, and thus one can write

E[ei − êi] = ei −
ei∑
ε=1

ε · (P[êi ≥ ε]− P[êi ≥ ε+ 1]) ,

from which eq. (19) follows. The other proofs follow the
same strategy. Moreover, all proofs are discussed at length
in the Appendix for the convenience of the reader. �

The characterization of the expected errors provided in
the previous theorem shows that the quality of the estimates
heavily depends on the graph topology and on the choice of
the parameter L ∈ N. In fact, it can be noticed that not only
for L→∞ the expected errors go to zero, but also that the
decaying of each term is geometrical in L. We will further
discuss this fact in the next section.

V. SIMULATION RESULTS

In the first simulation we consider 103 random graphs
having n = 300 nodes with diameter d = 9 and radius r = 5.
For each graph, and for all choices of the parameter L =
1, . . . , n we compute the expected errors on the diameter
and the radius according to eq. (20)-(21) and compute the
average error made by executing the EDR Protocol for 10
times. The results of the simulation, which are given in
Fig. 1, corroborates the theoretical results in the sense that
the average actual error made by the the proposed protocol
is exactly the expected error given by the characterization in
Section IV.

As discussed in the previous section, the expected errors
decay exponentially with L. In particular, while each term
in the summation of eq. (20)-(21) decays exponentially, the
convergence rate is determined by the largest addend in
the summation, which by definition has always magnitude
strictly less then one. It is also interesting to notice that it is
possible to identify a threshold value, which in our case is
L∗ ≈ 50, after which the decay has almost reached its final
value.

Since the design of the parameter L trades-off memory
burden and communication complexity with the estimation
accuracy, a pragmatic choice of the parameter L could be
around such pivot point L∗ ≈ 50 in the decaying curve,
which ensures that both expected errors are strictly below 1.
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Fig. 2. Dynamic tracking of diameter and radius in a random network of
|V | = 300 nodes.



As a second simulation we consider a random graph
with the same number of n = |V | = 300 nodes but
with time-varying topology, thus allowing fluctuations in the
values of the radius and diameter. Changes in the network
occur every Υ = 500 iterations and the agents execute the
EDR Protocol without the need of being re-initialized. Every
time a change in the topology occurs, a transient behavior
can be observed leading all agents to a new steady-state, thus
validating the use of the proposed protocol in time-varying
networks, theoretically characterized in terms of steady state
in Lemma 2 and in terms of expected error in Theorem 1.

The estimations d̂i(k), r̂i(k) with the choice of α = 0.1
and L = 50, the value suggested by the above analysis, are
plotted in Fig. 2. It can be noticed that both the diameter
and radius estimation show a transient behavior every time
the network change its topology and then converge to a
new steady state, failing the correct estimation only once.
Moreover, it can be noticed that at the end of each time
window of length Υ = 100 the estimation error is not greater
than 1, in accordance to the expected error analysis.

VI. CONCLUSION

In this work we have solved the problem of distributed
tracking of important graph parameters in time-varying net-
works, namely the eccentricities of the nodes, the diameter
and radius of the network. The proposed approach consists
of a distributed estimation protocol which exploits static
and dynamic max-consensus protocols as subroutines. The
main advantages of the proposed method is the possibility
to be implemented on time-varying networks without the
need to reinitialize the algorithm after each change of the
graph parameters, as it is required by other distributed
algorithms at the current state of the art. Also, the proposed
estimation protocol is developed within the framework of
anonymous networks, i.e., each agent does not share its
identity to its neighbors in the graph. As future work we
aim to characterize and extend the current approach to open
multi-agent networks, i.e., large scale networks where agents
can also log in and out of the network.
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APPENDIX

For the convenience of the reader, in this section we
append the detailed proof of Theorem 1. It will not appear
in the final version of this paper.

A. Expected estimation error of node eccentricities

We now prove that

E[ei(k)− êi(k)] =

ei∑
ε=1

(
1−

∑ei
h=ε |N h

i (k)|
|V |

)L
,

for k ∈ [k0 + Tc, k0 + Υ] and omitting in the following the
time dependence (k). By Lemma 2, it holds

êi = max
`

distij∗` ,

with j∗` given in eq. (3). Thus, êi is at least ε ∈ {1, . . . , ei}
iff there is ` ∈ {1, . . . , L} such that distij∗` ≥ ε, i.e.,

P[êi ≥ ε] = P[∃` : distij∗` ≥ ε].
The complementary event is that for all ` ∈ {1, . . . , L} it
holds that distij∗` < ε, and therefore one can compute

P[êi ≥ ε] = 1− P[∀` : distij∗` < ε].

Since all events distij∗` < ε for ` ∈ {1, . . . , L} are indepen-
dent from each other, then their joint probability equals the
product of their probabilities. Moreover, noting that for any
given ` ∈ {1, . . . , L} the probability of event distij∗` < ε is
equal to the probability of event distij < ε for all j ∈ V ,
one can write

P[êi ≥ ε] = 1− (P[∀j : distij < ε])
L
.

By exploiting again the complementary event we write

P[êi ≥ ε] = 1− (1− P[∃j : distij ≥ ε])L .
Finally, the probability that there exists j ∈ V such that
distij ≥ ε can be computed by taking the ratio between
number of favourite outcomes, which is the sum of all nodes
with distance to node i greater or equal than ε, and the total
number of nodes, i.e.,

P[êi ≥ ε] = 1−
(

1− |N
ei
i |
|V |

)L
. (22)

By means of the previous result, we are going to compute
the expected error, namely

E[ei − êi] = ei − E[êi].

In statistics and probability analysis, the expected value is
calculated by multiplying each of the possible outcomes by
the probability each outcome will occur and then summing
all of those values, i.e.,

E[ei − êi] = ei −
ei∑
ε=1

ε · P[êi = ε].

It is easy to realize that the probability of the event êi = ε
can be computed by first computing the probability of event
êi ≥ ε and then subtracting the probability of event êi ≥

ε + 1. This is possible since the the events êi = ε for any
ε ∈ {1, . . . , ei} are independent, and thus we can write

E[ei − êi] = ei −
ei∑
ε=1

ε · (P[êi ≥ ε]− P[êi ≥ ε+ 1])

By some manipulation we compute

E[ei − êi] = ei −
ei∑
ε=1

ε · P[êi ≥ ε] +

ei∑
ε=1

ε · P[êi ≥ ε+ 1]

= ei −
ei∑
ε=1

ε · P[êi ≥ ε] +

ei∑
ε=2

(ε− 1) · P[êi ≥ ε]

= ei −
ei∑
ε=1

P[êi ≥ ε].

By exploiting eq. (22) it follows

E[ei − êi] = ei −
ei∑
ε=1

(
1−

(
1−

∑ei
h=ε |N h

i |
|V |

)L)

=

ei∑
ε=1

(
1−

∑ei
h=ε |N h

i |
|V |

)L
,

completing the proof.

B. Expected estimation error of network diameter

We now prove that

E[d(k)− d̂i(k)] =

d∑
δ=r+1

(
1−

∑d
h=δ |N h(k)|
|V |

)L
,

for k ∈ [k0 + Tc, k0 + Υ] and omitting in the following
the time dependence (k). By Lemma 2, since α ≤ d−1, it
follows

d̂i = max
`

disti∗` j∗` , ∀i ∈ V.

with j∗` and i∗` given in eq. (3)-(5), respectively. Thus, d̂i is
at least δ ∈ {r, . . . , d} iff there is ` ∈ {1, . . . , L} such that
disti∗` j∗` ≥ δ, i.e.,

P[d̂i ≥ δ] = P[∃` : disti∗` j∗` ≥ δ].
The complementary event is that for all ` ∈ {1, . . . , L} it
holds that disti∗` j∗` < ε, and therefore one can compute

P[d̂i ≥ δ] = 1− P[∀` : disti∗` j∗` < δ]

Since all events disti∗` j∗` < δ for ` ∈ {1, . . . , L} are indepen-
dent from each other, then their joint probability equals the
product of their probabilities. Moreover, noting that for any
given ` ∈ {1, . . . , L} the probability of event disti∗` j∗` < δ is
equal to the probability of event distij < δ for all couples
p, q ∈ V , one can write

P[d̂i ≥ δ] = 1− (P[∀(p, q) : distpq < δ])
L
.

By exploiting again the complementary event we write

P[d̂i ≥ δ] = 1− (1− P[∃(p, q) : distpq ≥ δ])L .



Finally, the probability that there exists a couple of nodes
p, q ∈ V such that distpq ≥ δ can be computed by taking
the ratio between number of favourite outcomes, which is
the sum of all nodes with eccentricity greater or equal than
δ, and the total number of nodes, i.e.,

P[d̂i ≥ δ] = 1−
(

1−
∑d
h=δ |N h|
|V |

)L
. (23)

By means of the previous result, we are going to compute
the expected error, namely

E[d− d̂i] = d− E[d̂i].

We use the same proof strategy as for the eccentricities,
which follows

E[d− d̂i] = d−
d∑
δ=r

δ · P[d̂i = δ]

= d−
d∑
δ=r

δ ·
(
P[d̂i ≥ δ]− P[d̂i ≥ δ + 1]

)
= d−

d∑
δ=r

δ · P[d̂i ≥ δ] +

d∑
δ=r+1

(δ − 1) · P[d̂i ≥ δ]

= d− r −
d∑

δ=r+1

P[d̂i ≥ δ].

By exploiting eq. (23) it follows

E[d− d̂i] = d− r −
d∑

δ=r+1

1−
(

1−
∑d
h=δ |N h|
|V |

)L
=

d∑
δ=r+1

(
1−

∑d
h=δ |N h|
|V |

)L
,

completing the proof.

C. Expected estimation error on the network radius

We now prove that

E[r̂i(k)− r(k)] =

d−1∑
ρ=r

(
1−

∑ρ
h=r |N h(k)|
|V |

)L
,

for k ∈ [k0 + Tc, k0 + Υ] and omitting in the following the
time dependence (k). By Lemma 2, since α ≤ d−1 it follows

r̂i = dr̂ie = min
`

disti∗` j∗` .

with j∗` and i∗` given in eq. (3)-(5), respectively. Thus, r̂i is
at most ρ ∈ {r, . . . , d} iff there is ` ∈ {1, . . . , L} such that
disti∗` j∗` ≥ ρ, i.e.,

P[r̂i ≤ ρ] = P[∃` : disti∗` j∗` ≤ ρ].

The complementary event is that for all ` ∈ {1, . . . , L} it
holds that disti∗` j∗` > ε, and therefore one can compute

P[r̂i ≤ ρ] = 1− P[∀` : disti∗` j∗` > ρ]

Since all events disti∗` j∗` < ρ for ` ∈ {1, . . . , L} are indepen-

dent from each other, then their joint probability equals the
product of their probabilities. Moreover, noting that for any
given ` ∈ {1, . . . , L} the probability of event disti∗` j∗` > ρ is
equal to the probability of event distij > ρ for all couples
p, q ∈ V , one can write

P[r̂i ≥ ρ] = 1− (P[∀(p, q) : distpq > ρ])
L
.

By exploiting again the complementary event we write

P[r̂i ≤ ρ] = 1− (1− P[∃(p, q) : distpq ≤ ρ])
L
.

Finally, the probability that there exists a couple of nodes
p, q ∈ V such that distij ≤ ρ can be computed by taking
the ratio between number of favourite outcomes, which is
the sum of all nodes with eccentricity lesser or equal than
ρ, and the total number of nodes, i.e.,

P[r̂i ≤ ρ] = 1−
(

1−
∑ρ
h=r |N h|
|V |

)L
. (24)

By means of the previous result, we are going to compute
the expected error, namely

E[r̂i − r] = E[r̂i]− r.
We use the same proof strategy as for the eccentricities, thus
it holds

E[r̂i − r] = −r +

d∑
ρ=r

ρ · P[r̂i = ρ]

= −r +

d∑
ρ=r

ρ · (P[r̂i ≤ ρ]− P[r̂i ≤ ρ− 1])

= −r +

d+1∑
ρ=r+1

(ρ− 1) · P[r̂i ≤ ρ− 1]

−
d∑
ρ=r

ρ · P[r̂i ≤ ρ− 1]

= −r + d · P[r̂i ≤ d] +

d∑
ρ=r+1

ρ · P[r̂i ≤ ρ− 1]

−
d∑

ρ=r+1

P[r̂i ≤ ρ− 1]−
d∑

ρ=r+1

ρ · P[r̂i ≤ ρ− 1]

− r · P[r̂i ≤ r − 1]

= d− r −
d−1∑
ρ=r

P[r̂i ≤ ρ].

By exploiting eq. (24) it follows

E[r̂i − r] = d− r −
d−1∑
ρ=r

(
1−

(
1−

∑ρ
h=r |N h|
|V |

)L)

=

d−1∑
ρ=r

(
1−

∑ρ
h=r |N h|
|V |

)L
,

completing the proof.


