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Scenarios

Peer-to-peer Networks Multi-robot Systems

Smart Grids
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Problem set-up

Undirected network → G = (V,E)
Set of agents → V = {1, . . . , n}

Set of interactions → E ⊆ V × V
State of agent i → si ∈ Rm

Neighbors of agent i → Ni = {j ∣ (i, j) ∈ E}
Framework → Discrete-time k ∈ N

si(k + 1) = fi (si(k), sj(k) ∶ j ∈ Ni) , i ∈ V (1)

Objective

Make each agent i ∈ V estimate all the distinct eigenvalues λ1, λ2, . . . of the
normalized1 Laplacian matrix L = {ℓi,j} defined by

ℓi,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i = j
−1/∣Ni∣ if (i, j) ∈ E
0 otherwise

.

1 It can be generalized to not normalized Laplacian matrices.
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Main contribution

Motivation

In the current state-of-the-art methods, significant numerical errors occur in
large networks due to the ill-conditioning of the problem.

Contribution

A novel protocol to compute the eigenvalues of the Laplacian matrix with the
following features:

● High accuracy due to improved numerical conditioning of the problem
(numerical simulations);

● Each agent of the system is able to estimate the entire Laplacian spectrum;

● The number of locally exchanged messages grows linearly with the size of
the network;

● Scalability in large networks;
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The proposed protocol: overview

The proposed protocol envisages three main steps to be performed by each
agent in the network:

1 Update each state xi ∈ R according to the discretized wave equation,

xi(k + 1) = 2xi(k) − xi(k − 1) − c2 ∑
j∈Ni

ℓijxj(k) (2)

and keep the memory of past iterations of the local state xi.

2 Derive a data-driven model of the whole interconnected system by solving
a distributed optimization problem

θ∗ = argmin
θ1,...,θn

∑
i∈V
∥Aiθi − bi∥22

s.t. θi = θj ∀(i, j) ∈ E
, (3)

where matrix Ai and vector bi are constructed exploiting only the history
of the local state xi.

3 Compute the eigenvalues of L from the roots of the monic polynomial
with coefficients θ∗.
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Step 1: Local state updates based on the discretized wave equation

The agents update their state according to the discretized wave equation

xi(k + 1) = 2xi(k) − xi(k − 1) − c2 ∑
j∈Ni

ℓijxj(k), c2 ∈ (0,2].

The dynamics of the Multi-Agent System can be written in a compact form

[x(k + 1)
x(k) ] = [

2In − c2L −In
I 0n×n

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R

[ x(k)
x(k − 1)] . (4)

Proposition 1

If the graph is connected, the eigenvalues ri ∈ C of the transition matrix
R ∈ R2n×2n in eq. (4) are related to the eigenvalues λi ∈ R of the normalized
Laplacian matrix L ∈ Rn×n by

R{ri} =
2 − c2λi

2
, I{ri} = ±

c

2

√
(4 − c2λi)λi.

Remark

The problem of estimating the eigenvalues of L reduces to estimating the
eigenvalues of R.
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Step 2: Distributed Data-Driven Model Identification

An equivalent representation of the MAS is given by the following
Auto-Regressive (AR) model

[x(k + 1)
x(k) ] = R [

x(k)
x(k − 1)] ⇔ x(k+1) = θ∗mx(k)+θ∗m−1x(k−1)+⋯+θ∗1x(k−m+1),

(5)
for k ≥m, where m ∈ N denotes the number of past values.

Proposition 2

If m ≥ 2n, the eigenvalues of the transition matrix R ∈ R2n×2n are a subset of
the roots of the polynomial with coefficients θ∗ = [θ∗1 ,⋯, θ∗m]⊺ in eq. (5).

Remark

The problem of estimating the eigenvalues of R reduces to estimating the
coefficients θ∗.
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Step 2: Distributed Data-Driven Model Identification

Lemma 1

If m ≥ 2n, the vector of coefficients θ∗ is the solution of the optimization
problem

argmin
θ∈Rm

∥[X]1mθ − [x]m+12m ∥
2

2,

where

[X]1m =
⎡⎢⎢⎢⎢⎢⎣

x(1) ⋯ x(m)
⋮ . ⋮

x(m) ⋯ x(2m − 1)

⎤⎥⎥⎥⎥⎥⎦
, [x]m+12m =

⎡⎢⎢⎢⎢⎢⎣

x(m + 1)
⋮

x(2m)

⎤⎥⎥⎥⎥⎥⎦
.

Moreover, if the graph is connected, a distributed formulation of this
optimization problem is given by

θ∗ = argmin
θ1,...,θn∈Rm

∑
i∈V
∥[Xi]1mθi − [xi]m+12m ∥

2

2

s.t. θi = θj ∀(i, j) ∈ E
. (6)
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Step 2: Data-driven model identification via distributed optimization

The agents can derive a data-driven model of the system by computing the
coefficients θ∗ by solving the distributed optimization problem in eq. (6).

Lemma 2

The closed-form updates of the R-ADMM applied to the distributed
optimization problem in eq. (6) over a connected graph G are given by,

θi(k + 1) = Ni(vi + ∑
j∈Ni

yij(k))

yij(k + 1) = (1 − α)yij(k) + αpji

where pij = −yij(k) + 2ρθi(k + 1) are messages sent from agent i to agent j if
(i, j) ∈ E , yij are auxiliary local variables, α ∈ (0,1), ρ > 0 are design
parameters, and

Ni = (2[Xi]1m
⊺[Xi]1m + ρ∣Ni∣Im)−1,

vi = 2[Xi]1m
⊺[xi]m+12m .

[R0] N. Bastianello, R. Carli, L. Schenato, and M. Todescato. Asynchronous distributed optimization over lossy networks via relaxed ADMM:
Stability and linear convergence. IEEE Transactions on Automatic Control, 66(6):2620–2635, 2020.
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j∈Ni

yij(k))

yij(k + 1) = (1 − α)yij(k) + αpji

where pij = −yij(k) + 2ρθi(k + 1) are messages sent from agent i to agent j if
(i, j) ∈ E , yij are auxiliary local variables, α ∈ (0,1), ρ > 0 are design
parameters, and

Ni = (2[Xi]1m
⊺[Xi]1m + ρ∣Ni∣Im)−1,

vi = 2[Xi]1m
⊺[xi]m+12m .

[R0] N. Bastianello, R. Carli, L. Schenato, and M. Todescato. Asynchronous distributed optimization over lossy networks via relaxed ADMM:
Stability and linear convergence. IEEE Transactions on Automatic Control, 66(6):2620–2635, 2020.
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Step 3: Eigenvalues estimate procedure

The agents can now retrieve the eigenvalues of the normalized Laplacian matrix
L from the roots of the monic polynomial with coefficients θ∗,

rm − θ∗mrm−1 − θ∗m−1rm−2 − . . . − θ∗2r − θ∗1 . (7)

Lemma 3

A root r ∈ C of the monic polynomial in eq. (7) is an eigenvalue of the
normalized Laplacian matrix L only if

R{r}2 + I{r}2 = 1 (8)

Remarks

● Most likely, the condition in eq. (8) is not only necessary but also
sufficient;

● In practice, condition in eq. (8) is verified up to a precision ε > 0.
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The proposed protocol: detailed description
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Main results

Theorem

Consider a MAS with n agents interacting according to graph G and executing
Algorithm 1. If:

● the graph G is undirected and connected;

● the order of the model satisfies m ≥ 2n;
then each agent asymptotically estimates all distinct eigenvalues of the
Laplacian matrix L for almost every initial condition.

Proof sketch:

● The agents generate and store non vanishing/diverging trajectories by
executing the discretized wave equation (Proposition 1);

● The agents derive a data-driven model of the system θ∗ from the stored
data by solving a distributed optimization problem (Lemma 1 and Lemma
2);

● The agents compute the eigenvalues of the normalized Laplacian matrix by
selecting the roots of the monic polynomial defined by the coefficients θ∗

with unitary magnitude (Proposition 2 and Lemma 3).
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Example 1: Estimation of unobservable eigenvalues

Consider a network of n = 7 agents interacting according to a line graph
G = (V,E), such that the eigenvalues of the normalized Laplacian matrix L are

λ1 = 0, λ2 = 0.134, λ3 = 0.5, λ4 = 1, λ5 = 1.5, λ6 = 1.866, λ7 = 2.
The system is fully observable from the agents at the periphery of the network
(agents 1 and 7) but it is only partially observable from the central agent i∗ = 4.
By executing the proposed protocol with the following design parameters

c =
√
2, α = 0.99, ρ = 10, m = 2n, ε = 10−6, (9)

the agents asymptotically agree upon the vector of coefficients

θ∗ = [ 340,−359,376,918,24.3,24.6,24.9,25.1,25.1,25.0,24.8,24.5,296,276,255 ]⋅10−3

whose roots are

r1 = +1.000 ± j0.000, ∣r1∣ ≈ 1, r2 = +0.867 ± j0.499, ∣r2∣ ≈ 1,
r3 = +0.503 ± j0.865, ∣r3∣ ≈ 1, r4 = +0.005 ± j1.000, ∣r4∣ ≈ 1,
r5 = −0.492 ± j0.870, ∣r5∣ ≈ 1, r6 = −0.857 ± j0.516, ∣r6∣ ≈ 1,
r7 = −0.990 ± j0.141, ∣r7∣ ≈ 1, r8 = +0.338 ± j0.475, ∣r8∣ ≈ 0.5830.

.

The root r8 can be discarded since its modulus is not 1, estimating correctly all
the eigenvalues, up to an error of ε = 10−6.

Diego Deplano University of Cagliari, Italy

Distributed Estimation of the Laplacian Spectrum via Wave Equation and Distributed Optimization 13 / 15



Problem statement and motivation Proposed protocol based on the Wave Equation and Distributed Optimization Numerical simulations Conclusions and future perspectives

Example 1: Estimation of unobservable eigenvalues

Consider a network of n = 7 agents interacting according to a line graph
G = (V,E), such that the eigenvalues of the normalized Laplacian matrix L are

λ1 = 0, λ2 = 0.134, λ3 = 0.5, λ4 = 1, λ5 = 1.5, λ6 = 1.866, λ7 = 2.
The system is fully observable from the agents at the periphery of the network
(agents 1 and 7) but it is only partially observable from the central agent i∗ = 4.
By executing the proposed protocol with the following design parameters

c =
√
2, α = 0.99, ρ = 10, m = 2n, ε = 10−6, (9)

the agents asymptotically agree upon the vector of coefficients

θ∗ = [ 340,−359,376,918,24.3,24.6,24.9,25.1,25.1,25.0,24.8,24.5,296,276,255 ]⋅10−3

whose roots are

r1 = +1.000 ± j0.000, ∣r1∣ ≈ 1, r2 = +0.867 ± j0.499, ∣r2∣ ≈ 1,
r3 = +0.503 ± j0.865, ∣r3∣ ≈ 1, r4 = +0.005 ± j1.000, ∣r4∣ ≈ 1,
r5 = −0.492 ± j0.870, ∣r5∣ ≈ 1, r6 = −0.857 ± j0.516, ∣r6∣ ≈ 1,
r7 = −0.990 ± j0.141, ∣r7∣ ≈ 1, r8 = +0.338 ± j0.475, ∣r8∣ ≈ 0.5830.

.

The root r8 can be discarded since its modulus is not 1, estimating correctly all
the eigenvalues, up to an error of ε = 10−6.

Diego Deplano University of Cagliari, Italy

Distributed Estimation of the Laplacian Spectrum via Wave Equation and Distributed Optimization 13 / 15



Problem statement and motivation Proposed protocol based on the Wave Equation and Distributed Optimization Numerical simulations Conclusions and future perspectives

Example 2: Scalability for large-networks
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[R1] T. Charalambous, et al. ”Distributed finite-time computation of digraph

parameters: Left-eigenvector, out-degree and spectrum.” in IEEE Transactions on

Control of Network Systems 3.2 (2015).
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Conclusions and future directions

Contributions:
● A novel distributed algorithm for Laplacian eigenvalues estimation;
● High accuracy tanks to better numerical stability with respect to the

state-of-the-art;
● The memory burden grows linearly with the size of the network.

Work in progress:
● Formal characterization of the condition number of the problem and

comparison with the literature;
● Development of an online version of the algorithm to estimate and track

time-varying eigenvalues;
● Formulation of the problem in the context of open multi-agent systems.
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