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Abstract: This paper presents a distributed algorithm to estimate all distinct eigenvalues of the
Laplacian matrix encoding the unknown topology of a multi-agent system. The agents interact
according to the discrete-time wave equation so that their state trajectory persistently oscillates
with modes that depend on the eigenvalues of the Laplacian matrix. In this way, the problem
of distributed estimation of the eigenvalues of the Laplacian is recast into that of estimating
the modes of evolution of the state-trajectory of a linear dynamical system. Unlike previous
literature, this paper formulates a distributed optimization problem where, by considering its
own state trajectory, each agent estimates all distinct eigenvalues of the Laplacian matrix.
The main advantages of the proposed algorithm are the ability of each agent to estimate
also eigenvalues corresponding to modes unobservable from its own state trajectory, a much
greater numerical stability, and therefore improved scalability to large networks wit h respect
to competing approaches, as evidenced by the numerical comparisons.

1. INTRODUCTION

The need for decentralized and distributed architectures
has been growing for decades in a rapidly increasing
number of applications, especially those who deal with
large networks of interacting autonomous agents, such as
multi-robot systems [Zareh et al., 2018, Park and Yoo,
2021], smart grids and power networks [Dörfler et al.,
2018, Sadamoto et al., 2019], blockchain [Zhang et al.,
2020], social networks [Amelkin et al., 2017, Zhai and
Zheng, 2021], sensor networks [Mart́ınez and Bullo, 2006,
Muniraju et al., 2019], to name a few.

Problem of interest and motivation. The pattern of
interaction among the agents in a network strongly influ-
ences the behavior of the overall multi-agent system, and it
can be effectively modeled by a graph, where nodes repre-
sent agents and edges represent point-to-point interaction
or coupling links. Algebraic graph theory provides several
powerful tools and the spectral properties of the Laplacian
matrix associated to such graphs have emerged as pivotal
in the analysis and design of interconnected systems. For
instance, the spectrum of the Laplacian matrix can be
used to estimate several topological properties of a graph,
e.g., algebraic connectivity [Li et al., 2019, Kan et al.,
2018] and Fiedler vector [Deplano et al., 2020, Doshi and
Eun, 2020], min/max-cut [Dory et al., 2021], diameter and
radius [Oliva et al., 2016, Deplano et al., 2021a,b], spectral
gap [Vizuete et al., 2021]. Computing eigenvalues of a
graph Laplacian is therefore a key problem that has been
thoroughly investigated when the full state of the system
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is accessible from a centralized computational unit, but
it becomes more challenging in the context of distributed
estimation in multi-agent systems im which each agent has
access only to its own state, which is the main problem
addressed in this work.

Literature review. A recent branch of work uses the
strategy of looking at the past history of the agents while
running specific distributed protocols in order to retrieve
information about the Laplacian spectrum. Charalambous
et al. [2016] and Kibangou and Commault [2012] proposed
distributed protocols based on the execution of a consensus
protocol to enable the agents to compute the set of ob-
servable eigenvalues, where the former deals with weighted
digraphs and the latter deals with undirected graphs. In
all the above methods, the agents can only estimate the
eigenvalues associated with the modes that are observable,
and thus some agents may observe only a subset of the
eigenvalues. To overcome this issue, some authors have
recently investigated the strategy of recasting the problem
into a distributed optimization problem [Tran and Kiban-
gou, 2015, Zareh et al., 2018, Fan, 2017, Gusrialdi and
Qu, 2020]. However, as the network becomes larger, these
approaches suffer from ill-conditioning of the problem, due
to the vanishing trajectories generated by the consensus
dynamics. In contrast, a number of works force the agents’
states to oscillate and then retrieve information about the
eigenvalues via Fourier Transform strategies [Franceschelli
et al., 2009, Sahai et al., 2012, Franceschelli et al., 2013].
These methods involve the estimation of the frequency at
which the states’ oscillates via peak-detection algorithms,
which are known to be not accurate due to the occurrence
of spectral leakage events.

Main contribution. In this preliminary work we propose
a distributed algorithm that enables each agent to estimate



the distinct eigenvalues of the Laplacian spectrum with
superior accuracy with respect to the state of the art
for large networks. The idea of the approach is to make
the agents interact according to the wave equation and
cooperatively solve a distributed optimization problem
based on their own state trajectories to estimate the
modes of the persistently oscillating network. The time
constants corresponding to these modes are related to the
eigenvalues of the Laplacian matrix which encodes the
unknown graph topology. Unlike previous literature, the
proposed approach combines the wave equation method
and the formulation of a distributed optimization problem
for improved numerical stability in large networks.

The structure of this paper is as follows. We introduce our
notations in Section II. In Section III, we present our novel
algorithm to solve the distributed eigenvalue estimation
problem. In Section IV numerical simulations to compare
the proposed algorithm with a competing approach are
provided. Finally, future directions and concluding re-
marks are contained in Section V.

2. NOTATION

The set of real and integer numbers are denoted by R
and Z, while R≥0, N and R+,N+ denote their restriction
to nonnegative and positive entries, respectively. Matrices
are denoted by uppercase letters and vectors by bold
lowercase letters, whose entries are denoted by lowercase,
nonbold symbols. For instance, x = [x1, . . . , xn]

⊤ denotes
a vector of n ∈ N+ entries xi ∈ R with i = 1, . . . , n, and
M = {mij} denotes a square matrix of dimension n ∈
N+ with entries mij ∈ R with i, j = 1, . . . , n. Moreover,
the identity matrix is denoted by In while 1n denotes
a vector of ones of dimension n ∈ N+. When clear
from the context, the subscript is omitted. Given a signal
x(k) ∈ Rn for k ∈ N, we denote by [x]ab , where a, b ∈ [1, n]
and a ≤ b, its restriction to the interval [a, b], namely
[x]ab = [x(a)⊤, · · · ,x(b)⊤]⊤. Moreover, for any m ∈ N+,
we denote by [X]am the square Hankel matrix of dimension
m with first entry x(a), namely

[X]am =

 x(a) · · · x(a+m− 1)
...

. . .
...

x(a+m− 1) · · · x(2m− 2 + a)

 .

2.1 Networks and Graphs

We consider multi-agent systems (MASs) consisting of n ∈
N+ interconnected agents modeled as discrete-time dy-
namical systems. The pattern of interactions is described
by a graph G = (V, E), where V = {1, . . . , n} is the set of
nodes modeling the agents, and E ⊆ (V × V) is the set of
edges modeling the point-to-point interactions. The inter-
actions among the agents are assumed to be bidirectional,
and therefore the graph is undirected, i.e., if (i, j) ∈ E then
(j, i) ∈ E . An undirected graph G is said to be connected
if between any pair of nodes i, j ∈ V there exists a path.
Nodes i, j ∈ V are said to be neighbors if there exists an
edge between them, i.e., (i, j) ∈ E . The set of neighbors of
the i-th node is denoted by Ni = {j ∈ V : (i, j) ∈ E}. We
consider graphs without self-loops, i.e., i ̸∈ Ni. The degree
matrix D ∈ Rn×n is a diagonal matrix, whose diagonal

elements are the degrees |Ni| of the nodes. The adjacency
matrix A = {ai,j} ∈ Rn×n associated to a graph G is
such that the entry ai,j is equal to 1 if there is an edge
between nodes i, j ∈ V, i.e., (i, j) ∈ E , and it is equal to
0 otherwise. The normalized Laplacian matrix L = {ℓij}
is given by L = In −AD−1. For undirected graphs, the
normalized Laplacian matrix is symmetric, i.e., L = L⊤,
and it satisfies the following two properties:

• The eigenvalues of L denoted by λi with i ∈ V are
real and nonnegative, λi ∈ R≥0, and can be ordered
such that λi ≤ λi+1 for i = 1, . . . , n− 1.

• The smallest eigenvalue of L is null, λ1 = 0, and the
largest eigenvalue is upper bounded by λn ≤ 2.

3. DISTRIBUTED SPECTRUM ESTIMATION

The problem we address is that of making each agent in the
network estimate all distinct eigenvalues of the normalized
Laplacian matrix L = {ℓij} associated to G while only
exchanging local information with its neighbors.

Such problem can be solved by Algorithm 1 given on
the next page, which envisages three main steps to be
performed by each agent i ∈ V in the network:

• Step 1: Update its own state xi ∈ R according to the
discretized wave equation,

xi(k+ 1) = 2xi(k)− xi(k− 1)− c2
∑
j∈Ni

ℓijxj(k) (1)

and keep memory of past iterations. In this way, the
agents’ states persistently oscillate with modes that
depend on the eigenvalues of L.

• Step 2: Derive a data-driven model with order m
of the whole interconnected system by solving the
distributed optimization problem

θ∗ = argmin
θ1,...,θn∈Rm

∑
i∈V

∣∣∣∣[Xi]
1
mθi − [xi]

m+1
2m

∣∣∣∣2
2

s.t. θi = θj ∀(i, j) ∈ E
, (2)

where matrix [Xi]
1
m and vector [xi]

m+1
2m are con-

structed exploiting only the knowledge of the history
of the local state xi.

• Step 3: Compute the eigenvalues of L from the roots
of the monic polynomial with coefficients θ∗.

In the following sections we provide a step-by-step expla-
nation of the algorithm, showing a series of intermediate
results which are instrumental to prove the main result of
the paper given in Theorem 1, whose proof sketch is thus
postponed to Section 3.4.

Theorem 1. Consider a MAS with n agents interacting
according to graph G and executing Algorithm 1. If:

• the graph G is undirected and connected;
• the order of the model satisfies m ≥ 2n;

then each agent asymptotically estimates all distinct eigen-
values of the Laplacian matrix L for almost every initial
condition.



Algorithm 1: Distributed Estimation of Distinct
Eigenvalues of the Laplacian Matrix

Input: Order m ∈ N+, wave speed c ∈ (0,
√
2),

design parameters α ∈ (0, 1), ρ > 0, ε > 0
Init.: xi(1) = xi(0) ∈ R for all i ∈ V

yij(2m) ∈ Rm for all (i, j) ∈ E
Output: Estimated eigenvalues λ̂j

for k = 1, 2, 3, . . . each node i ∈ V does
if k ≤ 2m− 1 then // Step 1

gather xj(k) from each neighbor j ∈ Ni

xi(k + 1) = 2xi(k)− xi(k − 1)− c2
∑
j∈Ni

ℓijxi(k)

send xi(k + 1) to each neighbor j ∈ Ni

if k = 2m− 1 then

Ni = (2[Xi]
1
m

⊤
[Xi]

1
m + ρ|Ni|Im)−1,

vi = 2[Xi]
1
m

⊤
[xi]

m+1
2m

else // Step 2

θi(k + 1) = Ni

(
vi +

∑
j∈Ni

yij(k)
)

pij = −yij(k) + 2ρθi(k + 1)
send pij to each neighbor j ∈ Ni

gather pji from each neighbor j ∈ Ni

yij(k + 1) = (1− α)yij(k) + αpji

compute the roots of rm =
∑m−1

j=0 θi,j(k + 1)rj

for each complex root rj ∈ C // Step 3

if |ℜ{rj}2 + ℑ{rj}2 − 1| < ε then

output λ̂j = 2(1−ℜ{rj})/c2

3.1 Step 1: Local state updates based on the discretized
wave equation

Denoting with z(k) =
[
x⊤(k + 1) x⊤(k)

]⊤ ∈ R2n the
state of the MAS when the agents execute the wave
equation (1), its dynamics can be written in compact form

z(k + 1) = Rz(k), with R =

[
2In − c2L −In

In 0n×n

]
. (3)

We recall in the next Lemma two known results: a suffi-
cient condition for marginal stability of the wave equation
and the relation between the eigenvalues of the transition
matrix R and the Laplacian matrix L (for instance, see
Proposition 3.1 in [Sahai et al., 2012]).

Proposition 1. A MAS in which the agents update their
state according to the wave equation is marginally stable if

c2 ∈ (0, 2), (4)

with an initial condition x(1) = x(0). If the graph and
connected, the eigenvalues ri ∈ C of R in eq. (3) are related
to the eigenvalues λi ∈ R of L by

ℜ{ri} =
2− c2λi

2
, ℑ{ri} = ± c

2

√
(4− c2λi)λi. (5)

The strategy of making the agents’ state oscillate and
then retrieve an estimate of the Laplacian eigenvalues
has been previously adopted by other state-of-art works,
such as that of Sahai et al. in [Sahai et al., 2012] and
Franceschelli et al. in [Franceschelli et al., 2013]. Unlike
these works, which employ a frequency domain analysis

of the wave equation iteration, we aim at exploiting the
history of the state trajectories of the agent executing the
wave equation in order to determine a data-driven model
of the MAS in a distributed way (see Section 3.2) from
which the eigenvalues of the Laplacian can be derived (see
Section 3.3).

We claim that adopting of the wave equation in Algorithm
1 reduces the condition number of the problem for large
networks with respect to standard consensus dynamics
as it has been done recently by Charalambous et al. in
[Charalambous et al., 2016]. Indeed, as the number of
agents within the network becomes larger, a wider time
window of observation of the state trajectories is needed.
Since the execution of the wave equation makes the agents’
states persistently oscillate over time, neither vanishing
nor diverging [Evans, 2010, Friedman and Tillich, 2004],
it allows to observe the state trajectories for larger time
windows and without loss of information if compared to
the consensus dynamics. Although formal proof of this
claim will be the object of future work, in this preliminary
work we corroborate the claim by means of numerical
simulations in Section 4.

3.2 Step 2: Distributed Data-Driven Model Identification

An equivalent representation of the MAS in state-space
form is given by the following Auto-Regressive (AR)
model, which specifies that the state variable z(k) ∈ R2n

at time k depends linearly on its own previous values,

z(k) = θ∗mz(k−1)+ θ∗m−1z(k−2)+ · · ·+ θ∗1z(k−m) (6)

where m ∈ N+ denotes the number of past values.
With this representation, usually employed in data-driven
system identification [Bittanti, 2019], the eigenvalues of
the transition matrix R, which defines the dynamics of
the system in its state-space form (3), are a subset of the
roots of the monic polynomial (6).

The following Lemma 1 shows that the coefficients of this
polynomial can be computed in a distributed way by the
agents by solving the optimization problem in eq. (2). In
other words, the agents can cooperate to agree upon a
common AR model of the system that exactly describes
the dynamics of each state trajectory xi(k), without the
need to know the full state x(k).

Lemma 1. Consider a MAS in which the agents update
their state according to the wave equation. If the graph is
connected, the distributed optimization problem in eq. (2)
is equivalent to the centralized optimization problem

argmin
θ∈Rm

∣∣∣∣[Z]1mθ − [z]m+1
2m

∣∣∣∣2
2
, (7)

whose solution is the unique vector of coefficients
θ∗ = [θ∗1 , · · · , θ∗m]⊤ in eq. (6) if m ≥ 2n.

Proof. Enumerating the signal samples in eq. (6) from
step m+ 1 to step 2m results inz(m+ 1)

...
z(2m)


︸ ︷︷ ︸

[z]m+1
2m

=

 z(1) · · · z(m)
... .

...
z(m) · · · z(2m− 1)


︸ ︷︷ ︸

[Z]1m

θ∗1
...
θ∗m


︸ ︷︷ ︸

θ∗

. (8)



From the above linear system, it is clear that θ∗ defined
by the coefficients of eq. (6) is a solution to the cen-
tralized optimization problem in eq. (7). Recalling that
z(k) = [x⊤(k + 1), x⊤(k)]⊤, we notice that the rows of
the matrix [Z]1m can be rearranged into a matrix formed
by two blocks [X]1m and [X]2m, leading to∣∣∣∣[Z]1mθ − [z]m+1

2m

∣∣∣∣2
2
=
∣∣∣∣[X]1mθ − [x]m+1

2m

∣∣∣∣2
2
+
∣∣∣∣[X]2mθ − [x]m+2

2m+1

∣∣∣∣2
2

By construction, both the Hankel matrices [X]1m and
[X]2m have dimension m and describe the same system of
dimension 2n. Therefore, if m ≥ 2n, the minimizers of
those terms coincide, it is unique and equal to θ∗, i.e.,

θ∗ = argmin
θ

∣∣∣∣[X]1mθ − [x]m+1
2m

∣∣∣∣2
2
.

Furthermore, since matrix [X]1,mT−1 and vector [x]m+1
T con-

tains the entries of the state trajectory of each agent
i = 1, . . . , n, we can write∣∣∣∣[X]1m − [x]m+1

2m

∣∣∣∣2
2
=

∑
i∈V

∣∣∣∣[Xi]
1
mθ − [xi]

m+1
2m

∣∣∣∣2
2
,

from which the equivalence between eqs. (7)-(2) follows. 2

Some important remarks are in order.

Remark 1. Due to Lemma 1, when the agents solve the
distributed optimization problem in eq. (2), they estimate
a common model by achieving consensus on the one that
better approximates all the local state trajectories, thus
only exploiting the local information of their own state
trajectory and not the global information of the whole
system trajectory. Moreover, since each mode of the system
is observable from at least one agent in the network, then
all the modes are encoded into the estimated model in such
a distributed way.

Remark 2. Based on the methods used, it is reasonable
to believe that the estimates generated by Algorithm 1 are
unbiased in the presence of noise or disturbances with
zero means. Furthermore, these estimates are expected
to improve over time, particularly for low values of the
variances.

Remark 3. While executing Algorithm 1, each agent
i ∈ V needs to store matrix Ni ∈ Rm×m and vector
vi ∈ Rm given in eq. (11), where it is assumed m ≥ 2n.
However, numerical simulations highlighted that smaller
values of m could be sufficient, for instance in the case of
eigenvalues with algebraic multiplicity greater than one. A
more detailed analysis is left for future investigation.

Among the several methods proposed in the current lit-
erature to solve problem (2), in this work, we resort to
the distributed relaxed version of the alternating direc-
tion method of multipliers (R-ADMM) formalized by Bas-
tianello et al. in [Bastianello et al., 2020].

Lemma 2. The R-ADMM applied to the distributed op-
timization problem in eq. (2) over a connected graph G =
(V, E) is characterized by the following updates,

θi(k + 1) = Ni

(
vi +

∑
j∈Ni

yij(k)
)

(9)

yij(k + 1) = (1− α)yij(k) + αpji (10)

where pij = −yij(k)+2ρθi(k+1) are messages sent from
agent i to agent j if (i, j) ∈ E, yij are auxiliary local
variables, α ∈ (0, 1), ρ > 0 are design parameters, and

Ni = (2[Xi]
1
m

⊤
[Xi]

1
m + ρ|Ni|Im)−1,

vi = 2[Xi]
1
m

⊤
[xi]

m+1
2m .

(11)

Proof. The optimization problem in eq. (2) is of the type

min
θ1,...,θn

∑
i∈V

fi(θi)

s.t. θi = θj ∀(i, j) ∈ E
,

Where the costs fi(θi) =
∣∣∣∣[Xi]

1
mθi − [xi]

m+1
2m

∣∣∣∣2
2

are

strongly convex. Following [Bastianello et al., 2020], the
R-ADMM depends on two design parameters α ∈ (0, 1)
and ρ > 0 and it is characterized by the updates of the
auxiliary variables yij as in eq. (10) and the updates of θi

are given by the following minimization problem

θi(k+1) = argmin
θ

fi(θ)−
∑
j∈Ni

θ⊤yij(k) +
ρ|Ni|
2

||θ||22


whose closed-form solution is computed as detailed next.
Let g(θ) be the function to be minimized, i.e.,

g(θ) =
∣∣∣∣[Xi]

1
mθi − [xi]

m+1
2m

∣∣∣∣2
2
−

∑
j∈Ni

θ⊤yij(k)+
ρ|Ni|
2

||θ||22

The minimizer of g(θ) is obtained by finding the zeros of
its gradient, ∇g(θ) =

(2[Xi]
1
m

⊤
[Xi]

1
m + ρ|Ni|Im)︸ ︷︷ ︸

N−1
i

θ − 2[Xi]
1
m

⊤
[xi]

m+1
2m︸ ︷︷ ︸

vi

+
∑
j∈Ni

yij(k))

from which the thesis follows. 2

3.3 Step 3: Eigenvalue estimation procedure

Let θ∗ be the solution to the distributed optimization
problem in (2) and consider the polynomial whose coef-
ficients are the entries of θ∗, namely,

rm − θ∗mrm−1 − θ∗m−1r
m−2 − . . .− θ∗2r − θ∗1 . (12)

In Lemma 3 we provide a method for the agents to
discriminate among these roots those that correspond to
the eigenvalues of the system.

Lemma 3. Consider a MAS in which the agents update
their state according to the wave equation and let θ∗ be the
solution to the distributed optimization problem in eq. (2)
with m ≥ 2n. Then a root r ∈ C of the monic polynomial
in eq. (12) defined by the coefficients of θ∗ is an eigenvalue
of the system in eq. (3) only if

ℜ{r}2 + ℑ{r}2 = 1 (13)

Proof. It is a direct consequence of Proposition 1 and
Lemma 1.

Remark 4. We believe that the condition (13) of Lemma 3
is not only necessary but also sufficient. This is consistent
with the simulation results, but a formal proof is currently
missing.

3.4 Proof sketch of Theorem 1

The agents update their state xi(k) according to the
wave equation in eq. (1) up to step k = 2m− 1, thus
generating non vanishing/diverging trajectories according



to Proposition 1. Afterwards, for k ≥ 2m the agents
solve the distributed optimization problem in eq. (2) via
R-ADMM algorithm by the iterations in eqs. (9)-(10).
For k → ∞ the agents converge linearly to the optimal
solution θ∗, see [Bastianello et al., 2020, Propositions 1-
2], which, according to Lemma 1, uniquely defines the
monic polynomial in eq. (6) if m ≥ 2n. Thus, the roots
of the polynomial include all the distinct eigenvalues of
system (3), but also additional roots when the order of
the system is not precisely known, i.e., when m > 2n.
Finally, Lemma 3 shows that the roots of the polynomial
in eq. (12) that corresponds to an eigenvalue of the system
must satisfy eq. (13), which thus constitutes a criterion
for the agents to discriminate the useful roots. The proof
is completed by remarking that from the eigenvalues of
the system one can infer the eigenvalues of the Laplacian
matrix according to eq. (5).

4. NUMERICAL SIMULATIONS

In this section, we show numerical simulations corrobo-
rating the effectiveness of Algorithm 1 and a compar-
ison with the algorithm proposed by Charalambous et
al. [Charalambous et al., 2016]. All the simulations are
run within Matlab environment, using variable precision
floating point arithmetic with 32 decimal digit accuracy.

4.1 Example 1: Unobservable eigenvalues

Consider a network of n = 7 agents interacting according
to an undirected graph with line topology. The set of the
eigenvalues Λ = {λi} of the Laplacian matrix L is

Λ = {0, 0.134, 0.5, 1, 1.5, 1.866, 2}.
In this setup, the system is fully observable from the
agents at the periphery of the network, but it is only
partially observable from the central node, which we call
node i∗ = 4.

The algorithm proposed by Charalambous et al in [Char-
alambous et al., 2016] allows each agent to estimate only
a number of eigenvalues equal to the rank of the observ-
ability matrix computed from that agent. Therefore, the
agent i∗ is able to estimate a subset Λ∗ ⊂ Λ of only 4
eigenvalues, that is Λ∗ = {0, 0.5, 1.5, 2}. In contrast, by
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Fig. 1. Number of estimated eigenvalue estimation in line
networks of different size

means of our Algorithm 1, agent i∗ is able to estimate all
the eigenvalues. In particular, having chosen the inputs
according to

c =
√
2, α = 0.99, ρ = 10, m = 20, ε = 10−6, (14)

the agents asymptotically agree upon the vector of coeffi-
cients

θ∗ =
[340, −359, 376, 918, 24.3, 24.6, 24.9, 25.1,

25.1, 25.0, 24.8, 24.5, 296, 276, 255 ] · 10−3

whose roots are
r1 = −0.990± j0.141, r2 = −0.857± j0.516

r3 = −0.492± j0.870, r4 = +0.005± j1.000

r5 = +0.503± j0.865, r6 = +0.867± j0.499

r7 = +0.338± j0.475, r8 = +1.000± j0.000

.

By means of eq. (13), each agent can discriminate the roots
that correspond to an eigenvalue of the Laplacian matrix
L, indeed, the only root that does not meet eq. (13) is r7,
indeed, ℜ{r7}2 + ℑ{r7}2 = 0.34 ≪ 1. On the other hand,
the other roots rj with j ̸= 7 meet eq. (13) up to an error
equal to ε = 10−6 and lead to the eigenvalues of L by

λ̂j = 2(1−ℜ{rj})/c2,
λ̂1 = 2, λ̂2 = 1.866, λ̂3 = 1.5, λ̂4 = 1,

λ̂5 = 0.5, λ̂6 = 0.134, λ̂8 = 0,

and the mean square error in the estimation is ≈ 10−15.

4.2 Example 2: Scalability for large-networks

In this section we run Algorithm 1 and Algorithm
3 in [Charalambous et al., 2016] over networks with
line topology by increasing the number of agents n =
3, 4, . . . , 19, 20, 30, 40, . . . , 100. We consider 10 different in-
stances of each problem with different initial conditions,
and show in Figs. 1-2 the average results. Differently from
Example 1, we consider an agent at the periphery of the
line graph, called i∗, from which all the modes of the
system are observable. If agents are numbered in ascending
order according to the line topology, then i∗ = 1. With this
setup, the comparison is more fair since both algorithms
theoretically allow agent i∗ to estimate all the eigenvalues
of the Laplacian matrix. If agents are numbered in ascend-
ing order according to the line topology, then i∗ = 1.
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networks of different size.



Figs. 1-2 show that when Algorithm 1 is executed by the
MAS with input parameters as in eq. (14), with a large
bound m = 5n, agent i∗ estimates all the eigenvalues
of the Laplacian matrix for any network size and with a
small mean square error ≈ 10−16 that does not increase
with the size of the network. On the other hand, Figs.
1-2 show that when algorithm in [Charalambous et al.,
2016] is executed by the MAS, agent i∗ can compute all
the eigenvalues of the Laplacian matrix only for small
networks, namely n ≤ 12. For larger networks, n > 12,
node i∗ fails in computing all the eigenvalues, meaning that
some of the eigenvalues are not estimated at all and some
eigenvalues are estimated with large errors. In particular,
in our experiments, the agent i∗ was not able to estimate
more than 12 eigenvalues regardless of the size of the
network, and the error made in such estimation grows up
to ≈ 0.1.

5. CONCLUSIONS

In this paper, we have proposed a novel protocol for the
distributed estimation of the eigenvalues of the Laplacian
matrix in undirected networks. The protocol allows each
agent to estimate all the eigenvalues with high accuracy
and it is scalable for large networks due to the linear
growth of the size of locally exchanged messages with re-
spect to the size of the network. Future research directions
include the generalization of the proposed protocol to a
real-time scenario, where the agents estimate the eigenval-
ues when the number of agents and their interconnections
may vary over time.
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