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Abstract—In this work, we characterize a class of nonlinear
monotone dynamical systems that have a certain translation
invariance property which goes by the name of plus-homogeneity;
usually called “topical" systems. Such systems need not be
asymptotically stable, since they are merely nonexpansive but not
contractive. Thus, we introduce a stricter version of monotonicity,
termed “type-K" in honor of Kamke, and we prove the asymp-
totic stability of the equilibrium points, as well as the convergence
of all trajectories to such equilibria for type-K monotone and
plus-homogeneous systems: we call them “K-topical".

Since topical maps are the natural nonlinear counterpart of
linear maps defined by row-stochastic matrices, which are a cor-
nerstone in the convergence analysis of linear multi-agent systems
(MASs), we exploit our results for solving the consensus problem
over nonlinear K-topical MASs. We first provide necessary and
sufficient conditions on the local interaction rules of the agents
ensuring the K-topicality of a MAS. Then, we prove that the
agents achieve consensus asymptotically if the graph describing
their interactions contains a globally reachable node.

Finally, several examples for continuous-time and discrete-time
systems are discussed to corroborate the enforceability of our
results in different applications.

I. INTRODUCTION

Dynamical systems whose trajectories preserve a partial
order have represented a fruitful topic of research in numerous
fields: such systems are usually called monotone [57]. Among
all particular classes of monotone systems, this paper considers
those ruled by topical maps, which are the nonlinear counter-
part of linear maps defined by row-stochastic matrices [39].

Following Gunawardena and Keane [33], we denote by the
name topical those systems whose solutions or flows φ satisfy

x ≤ z ⇒ φ(t, x) ≤ φ(t, z), ∀x, z ∈ X , (1)
φ(t, x+ α1) = φ(t, x) + α1, ∀x ∈ Rn,∀α ∈ R, (2)

at any time t ≥ 0, where x, y denote initial conditions
in the state space X ⊆ Rn. We refer to the property in
eq. (1) as monotonicity and to the property in eq. (2) as plus-
homogeneity. Topical dynamical systems have been a subject
of interest of both monotone dynamical systems theory [6],
where plus-homogeneity is referred to as “translation invari-
ance", and nonlinear Perron–Frobenius theory [44], where
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monotonicity is referred to as “order-preservation". In this
paper, we introduce a stricter variation of monotonicity, called
type-K monotonicity in honor of Kamke, which can be seen
as an important bridging link between these two theories, as
it is discussed in Section I-B. Consequently, we call K-topical
those systems being type-K monotone and plus-homogeneous

A. Main contributions

The main goal of this paper is to give a self-contained
introduction to smooth K-topical systems both in continuous-
time, where “smooth" denotes the continuous differentiability
of the vector field, and in discrete-time, where “smooth"
denotes the continuous differentiability of the map. Within this
goal, our first main result is the following:

• Trajectories of smooth K-topical systems are proved to
asymptotically converge toward an equilibrium point, if
any exists (see Theorem 1).

A further contribution is the derivation of necessary and
sufficient conditions for type-K monotonicity:

• A smooth continuous-time system is type-K monotone
if and only if its Jacobian matrix is Metzler everywhere
(see Corollary 2);

• A smooth discrete-time system is type-K monotone if and
only if its Jacobian matrix is Metzler everywhere with a
strictly positive diagonal almost everywhere (see Theo-
rem 4).

A knowledgeable reader may recognize the similarity of these
conditions to the well-known Kamke condition for continuous-
time system [14], [43], [57]. Indeed, a remarkable result is that
the Kamke condition is necessary and sufficient not only for
monotonicity of smooth systems (see Corollary 2), but also
for type-K monotonicity:

• Monotone systems in continuous-time whose vector
field is continuously differentiable are type-K monotone
(see Theorem 3).

A second goal consists in exploiting the convergence result
and the characterization of K-topical systems presented above
to solve the consensus problem in K-topical Multi-Agent Sys-
tems (MASs). Most of the results for achieving consensus in
linear MAS have been derived by considering row-stochastic
matrices, for which the celebrated Perron-Frobenius theory
provides a thorough spectral characterization [10], [41], [63].
Since topical maps generalize linear maps defined by row-
stochastic matrices, our results lay the groundwork for a
systematic analysis of general MAS with nonlinear interaction
rules among agents. Within this goal is our last result:
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• A K-topical MAS achieves consensus asymptotically if
the origin is an equilibrium point and if the graph contains
a globally reachable node (see Theorems 7-6).

B. Literature review

In the theory of monotone dynamical systems, emphasis
is put on the class of continuous-time systems being strongly
monotone [6], i.e., whose flows possess the following property:

x ⪇ z ⇒ φ(t, x) < φ(t, z), ∀x, z ∈ Rn.

Pioneering work in this field was done by Hirsch, who first
showed that if solutions of continuous-time strongly mono-
tone dynamical systems exist and are bounded, then they
converge to a set of equilibrium points [36]. On the other
hand, for discrete-time strongly monotone dynamical systems,
Polavcik showed that their iterative behavior converges to
periodic points under appropriate additional conditions [53].
An extensive overview of these results was given by Hirsch
and Smith [38], [57]. Remarkably, generic convergence to
equilibria can be made global, as in the case of contractive
systems with a unique equilibrium point [7].

In contrast, in nonlinear Perron–Frobenius theory one usu-
ally considers discrete-time dynamical systems that are only
monotone [44]. However, the relaxation of the assumption of
strong monotonicity makes unenforceable most of the theory
of monotone systems which then requires some additional
assumptions. An interesting branch of research has focused on
topical systems which possess the plus-homogeneity property
in eq. (2) [2], [20], [21], [26], [35], [55], as well as its
extension to the multi-homogeneous systems [28], [30]: a
unified framework has been recently provided by Gautier et.
al. in [31]. The pioneering work of Nussbaum [51] showed
that topical systems are nonexpansive under the sup-norm,
contrary to the strong monotonicity assumption which causes
the system to be contractive, thus ensuring the convergence of
all trajectories to an equilibrium point by a direct application of
the Banach fixed point theorem [7]. Indeed, when the system
is merely nonexpansive, such a nice global convergence result
is lost and one can only show that the trajectories converge
to periodic points and thus not necessarily to an equilibrium
point. Nussbaum has also shown that the primitiveness of
the Jacobian matrix is a sufficient condition ensuring the
convergence of a differentiable discrete-time system to its
positive eigenvector; this result has recently been generalized
to multi-homogeneous systems in [31].

The control community has recetly recognized the impor-
tance of bridging the two above-mentioned approaches. Angeli
and Sontag were the first to consider topical systems [5], [6]. In
particular, they have proved that every solution of continuous-
time topical systems possessing the strong monotonicity prop-
erty converges to an equilibrium point if the trajectory is
bounded. If one wishes to get a global convergence result
only assuming that the dynamical system is monotone without
a stronger assumption, one meets several difficulties when
applying any known methods used in the strongly monotone
case. Afterward, Hu and Jiang provided a similar result for
the restricted class of time-periodic systems while getting

rid of the strong monotonicity assumption [40]. Their proof
methodology is interesting: they provide a global convergence
result of discrete-time systems ruled by the Poincaré map asso-
ciated with a time-periodic topical system, which is, in turn, a
topical system possessing the property of type-K monotonicity.
The type-K monotonicity property, which encompasses strong
monotonicity, has been proposed for the first time by Jiang
in [42], and it has been recently exploited in the context of
multi-agent systems by us in [16], [17].

There are many authors currently investigating the consen-
sus problem over nonlinear monotone networks and systems,
which sometimes intrinsically possess the plus-homogeneity
property. Among them, Manfredi and Angeli have studied the
case of monotone networks with unilateral interactions [47].
Como and Lovisari have considered monotone dynamical flow
networks [11], [46], a topic of interest for Coogan and Arcak
as well [13]. In particular, Coogan has recently presented
a tutorial paper on mixed monotonicity, which extends the
usual notion of monotonicity [12]. Worthy of mention is
also the line of research on eventually monotone systems
pursued by Altafini and Mauroy [3], [59], as well as the
framework of differentially positive systems drawn up by Forni
and Sepulchre [27], and also the operator-theoretic perspective
adopted by Belgioioso and Grammatico [9]. For insights on
new advances and applications of monotone systems, we refer
the interested reader to the recent work of Smith [58].

C. Structure of the paper
In Section II we introduce the notation of the paper along

with some required preliminaries. In Section III we provide
a global convergence result for K-topical dynamical systems.
In Section V we consider K-topical multi-agent systems and
provide additional results regarding the consensus problem.
In Section VI we discuss several examples to corroborate the
applicability of our results. Finally, in Section VII we give our
final remarks and outline potential future directions.

II. NOTATION AND PRELIMINARIES

The set of real and integer numbers are denoted by R and Z,
while their restriction to nonnegative values are denoted with
R≥0 and N, respectively. Matrices are denoted by uppercase
letters, vectors and scalars are denoted by lowercase letters,
while sets are denoted by uppercase calligraphic letters. We
denote by 0n and 1n the vector of zeros and ones of dimension
n, respectively. The identity matrix of dimension n is denoted
by In. If clear from the context, subscripts are omitted.

A. Dynamical systems
We consider autonomous dynamical systems with an eu-

clidean state space X ⊆ Rn and denote the state of the system
at a generic time t by x(t) ∈ X .

Assumption 1. The domain X ⊆ Rn is assumed to be open
and convex, i.e., (1− α)x+ αy ∈ X for all x, y ∈ X .

When time is a continuous variable, t ∈ R, the system is
described by a set of ordinary differential equations arising
from,

ẋ(t) = f(x(t)), t ∈ R.
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When time is a discrete variable, k ∈ N, the system is
described by a set of difference equations,

x(k + 1) = f(x(k)), k ∈ N.

Function f determines the evolution of the state in time: in
continuous-time, f : X → Rn is a vector field; in discrete-
time, f : X → X is a map. We limit our study to smooth
systems, which are systems satisfying the following standing
assumption.

Assumption 2. In both frameworks, function f is assumed to
be of class C1, i.e., f is continuously differentiable.

Since we consider both continuous-time and discrete-time
systems, it is convenient to describe a dynamical system in
terms of its flow. Such description applies to both frameworks
and allows us to use a general uniform notation throughout
the paper. To this aim, we denote the time domain T which
has to be intended as follows:

• T = R for continuous-time systems;
• T = N for discrete-time systems;
To emphasize the dependence of the evolution x(t) on the

initial state x(0) = ξ, we denote the corresponding evolution
by φ(t, ξ), i.e.,

φ(t, ξ) = x(t), if x(0) = ξ.

The map φ(t, ξ) : T × X → X is called the flow of the
system at time t ∈ T starting at ξ. The sequence of all
consecutive states of the system is called the trajectory of the
system, and it is denoted by T (ξ) = (φ(t, ξ))t≥0. A trajectory
T (ξ) is said to be bounded if there exist ℓ, u ∈ X such that
for all x ∈ T (ξ) it holds ℓ ≤ x ≤ u; otherwise it is said to be
unbounded.

A point ξ ∈ X is called periodic if there exists a
positive T such that φ(T, ξ) = ξ. The minimal such T
is called the period of x. If the relation holds for any
T ∈ R≥0, we call ξ an equilibrium point. We denote by
F(φ) = {ξ ∈ X : φ(t, ξ) = ξ,∀t ∈ T}, the set of equilibrium
points, or simply F when clear from the context. An equi-
librium point xe ∈ F(φ) is said to be stable if for every
ε > 0 there is δ > 0 such that ||ξ − xe|| < δ implies
||φ(t, ξ)− xe|| < ε for any ξ ∈ X and t ∈ T, where ||·||
denotes the norm of a vector.

B. Multi-agent systems

We consider Multi-Agent Systems (MASs) wherein the
n ∈ N agents are modeled as autonomous dynamical systems
with scalar state xi(t) ∈ R, for i = 1, . . . , n.

The interconnections among the agents are given by a graph
G = (V, E) where V = {1, . . . , n} is the set of nodes
representing the agents and E ⊆ V × V is a set of directed
edges. A directed edge (i, j) ∈ E exists if agent i is influenced
by agent j: in this case, agent j is said to be a neighbor
of agent i. The set of neighbors of the i-th node is denoted
by Ni = {j ∈ V : (i, j) ∈ E}. Each agent i ∈ V updates its
own state according to a local interaction protocol, which, in
continuous-time, takes one the form

ẋi(t) = fi (xi(t), xj(t) : Ni) , t ∈ R,

and, in discrete-time, it takes the form

xi(k + 1) = fi (xi(k), xj(k) : Ni) , k ∈ N.

A directed path between two nodes p and q in a graph is
a finite sequence of m edges ek = (jk, ik) ∈ E that joins
node p to node q, i.e., j1 = p, im = q and ik = jk+1 for
k = 1, . . . ,m − 1. The node i is said to be reachable from
node j if there exists a directed path from node i to node j.
A node is said to be globally reachable if it is reachable from
all nodes j ∈ V .

A MAS is said to achieve consensus asymptotically if the
agents’ states converge to the same constant value, called the
consensus state, i.e., there is c ∈ R such that

lim
t→∞

x(t) = c1, or lim
k→∞

x(k) = c1,

for any initial condition x(0) ∈ X .

C. K-topical systems

Consider the Euclidean space Rn equipped with the stan-
dard partial order ≤ and let X ⊆ Rn. Dynamical systems
in (X ,≤) whose flow preserves such order are referred to
as order-preserving or monotone dynamical systems [4], [38],
[44]; we use the latter denomination. Next, we define a stricter
notion of monotonicity termed type-K monotonicity, which
was introduced by us for dynamical systems in discrete-
time [16], [17], while here it is given also for systems evolving
in continuous-time.

Definition 1 (Monotonicity and type-K). A dynamical system
on X ∈ Rn is said to be “monotone" if for any initial
conditions ξ1, ξ2 ∈ X the flow φ : T×X → X satisfies

ξ1 ≤ ξ2 ⇒ φ(t, ξ1) ≤ φ(t, ξ2), ∀t ∈ T,

and it is said to be “type-K monotone" if, for all i = 1, . . . , n,
it further satisfies

ξ1,i < ξ2,i ⇒ φi(t, ξ1) < φi(t, ξ2), ∀t ∈ T

where ξ1,i, ξ2,i and φi denote the i-th components. Corre-
spondingly, the map φ is said to be “monotone" or “type-K
monotone", respectively.

We consider type-K monotone systems which are also
invariant with respect to a rigid translation proportional to 1.
These systems are usually referred to as translation invariant
or plus-homogeneous1 systems [38], [44]; we use the latter
denomination.

Definition 2 (Plus-homogeneity). A dynamical system on
X ∈ Rn is said to be “plus-homogeneous" if the flow
φ : T×X → X satisfies

φ(t, ξ + α1) = φ(t, ξ) + α1, ∀α ∈ R, t ∈ T

for all initial conditions ξ ∈ X . Correspondingly, the map φ
is said to be plus-homogeneous.

1The name plus-homogeneity comes from the fact that the homogeneity
is intended with respect to the addition operation, while simple homogene-
ity is usually intended with respect to the multiplication operation, i.e.,
φ(t, αξ) = αφ(t, ξ), cfr. [44]
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Monotone systems satisfying also the plus-homogeneity
property are known in the literature as topical systems [8],
[44], [48], [54]. Since we require the stricter type-K property,
we next define the class of K-topical systems.

Definition 3 (K-topicality). A dynamical system on X ⊆ Rn

is called “K-topical" if it is type-K monotone and plus-
homogeneous. Correspondingly, the map φ : T×X → X is
said to be K-topical.

A nice feature of K-topical systems is that they are non-
expansive w.r.t. the sup-norm; this property is widely known
in the discrete-time framework [15], while in Lemma 1 we
prove it also for the continuous-time framework.

Definition 4 (Non-expansiveness). A dynamical system on
X ⊆ Rn is said to be “non-expansive" w.r.t. a metric d :
X × X → R≥0 if the flow φ satisfy

d(φ(t, ξ1), φ(t, ξ2)) ≤ d(ξ1, ξ2), ∀t ∈ T

for all initial conditions ξ1, ξ2 ∈ X . Correspondingly, the map
φ : T×X → X is said to be non-expansive.

Lemma 1. K-topical systems on X ⊆ Rn are “non-
expansive" w.r.t. the sup-metric d∞ : X × X → R≥0 induced
by the sup-norm, i.e.,

d∞(ξ1, ξ2) = ||ξ1 − ξ2||∞, ∀ξ1, ξ2 ∈ X .

Proof. For each fixed t ∈ T, we define a map
ϕt(x) = φ(t, x) : X → X . According to Crandall and Tar-
tar [15, Proposition 2], each ϕt(ξ) is such that∣∣∣∣ϕt(ξ1)− ϕt(ξ2)

∣∣∣∣
∞ ≤ ||ξ1 − ξ2||∞, ∀t ∈ R,

for any pair of initial conditions ξ1, ξ2 ∈ X . By replacing
ϕt(x) = φ(t, x), the proof is complete.

III. K-TOPICAL DYNAMICAL SYSTEMS

The main result of this section, given in Theorem 1, is that
for smooth K-topical systems in continuous or discrete-time,
each trajectory converges to some stable equilibrium point, if
any exists. For the convenience of the reader, we state here
this result and postpone its proof at the end of this section,
which makes use of several intermediate results.

Theorem 1 (Convergence). Consider a K-topical dynamical
system on X ⊆ Rn. If f is C1 and the set of equilibrium
point F is not empty, then for any initial condition ξ ∈ X
there exists a stable equilibrium point xξ ∈ F , such that

lim
t→∞

φ(t, ξ) = xξ, ∀ξ ∈ X . ■

As the above result is given for a general dynamical system,
regardless of which framework is considered (continuous or
discrete-time), we need to establish some equivalence relation.
First of all, in Lemma 2 we prove that solutions of continuous-
time topical systems are unique and exist at all times. Sec-
ondly, in Lemma 3 we show how to construct a discrete-time
system from a continuous-time topical system with the same
asymptotic behavior. Finally, after having proved the stability
of each equilibrium point in Lemma 4, the proof of Theorem 1
is carried out for the equivalent discretized system.

Let us step back for a moment and focus on the topicality
property. Topical systems have been considered for decades in
discrete-time,

x(k + 1) = f(x(k)), k ∈ N. (3)

In this case, the properties of the flow φ directly translates
into properties of the map f since φ(k, ξ) = fk(ξ) for any
initial condition ξ ∈ X and time k ∈ N. Thus, the asymptotic
behavior of the system is studied by considering the iterative
behavior of the map f ≡ φ1.

On the other hand, less attention has been paid to
continuous-time systems,

ẋ(t) = f(x(t)), t ∈ R. (4)

We show in Lemma 3 that, similarly to the discrete-time case,
the asymptotic behavior of the continuous-time system can
be inferred from the iterative behavior of its flow φT , for
any time discretization T ∈ R≥0 under the assumption of a
continuously differentiable vector field. To this aim, we first
need to prove in the next lemma that their flow is defined and
unique at all times.

Lemma 2. If a continuous-time system as in eq. (4) is topical
and if f is C1, then for any initial condition ξ ∈ X the flow
φ(t, ξ) exists for all t ∈ R≥0 and it is unique.

Proof. Since f ∈ C1, then we have the following facts2:
(i) For any initial condition ξ ∈ X the flow φ(t, ξ) exists in

an interval [0, T ] and it is unique in it;
(ii) the flow φ(t, ξ) is C1, i.e., its partial derivatives with

respect to time and initial conditions exists and are
continuous in the interval of existence [0, T ].

By topicality of the system, we can exploit the non-
expansiveness property given by Lemma 1 to ensure that
solutions exist for all t ≥ 0. Consider any initial condition
ξ ∈ X and a subsequent state φ(t∗, ξ1) with t∗ > 0, then we
can write

||φ(t, ξ)− φ(t, φ(t∗, ξ)||∞ ≤ ||ξ − φ(t∗, ξ)||∞, ∀t ∈ T.

The above relation says that the flow is Lipschitz and
therefore it does not diverge in finite time. This, jointly with
fact (ii) that the flow is continuous and differentiable in the
interval of existence, ensures that the existence and uniqueness
of the solutions stated in (i) hold in the interval [0,∞), thus
completing the proof.

Lemma 3. Consider a continuous-time system as in eq. (4).
Let φ(t, ξ) be the flow of system, fix an arbitrary time step T >
0, define the map g(·) = φ(T, ·) and consider the discrete-time
dynamical system defined by

y(k + 1) = g(y(k)), ∀T > 0. (5)

If the continuous-time system is topical and if its vector flow
f is C1, and if the initial states of the continuous-time and
discrete-time systems coincide, i.e., x(0) = y(0) = ξ, then

lim
t→∞

x(t) = lim
k→∞

y(k).

2The proof of these standard results can be found in Section 17.2 and
Section 17.6 of [37], respectively.



5

Proof. Having shown the existence and uniqueness of flows
in Lemma 2, the systems satisfies the so-called group law
(cfr. [14, Section 7.1]),

φ(q, φ(p, ξ)) = φ(p+ q, ξ)),

By selecting p = q = T ∈ R we can write φ(T, φ(T, ξ)) =
φ(2T, ξ). Thus, letting g(·) = φ(T, ·), consider the discrete-
time system in eq. (5), and write

x(kT ) = φ(kT, ξ) = gk(ξ) = y(k),

from which the statement of the theorem derives trivially.

Due to Lemma 3, regardless of whether the system under
consideration is continuous or discrete in time, one can equiv-
alently study its asymptotic behavior by means of a discrete-
time system as in eq. (5). This enables us to prove in the
next Lemma 4 that each equilibrium point of topical systems
is stable and, consequently, the main result anticipated at the
beginning of this section.

Lemma 4. If a dynamical system is topical and if f is C1,
then every equilibrium point xe ∈ F is stable.

Proof. By Lemma 3, consider the discrete-time system as
defined in eq. (5) for T = 1. Let xe ∈ F be an equilibrium
point, then all points xe + c1 with c ∈ R are equilibrium
points. Therefore, for any neighborhood W of xe, one can
find two equilibrium points belonging to this neighborhood
a, b ∈ W ∩ F such that a < xe < b and [a, b] ⊂ W . By
monotonicity property, it holds

a = gk(a) ≤ gk(x) ≤ gk(b) = b, ∀x ∈ [a, b], k ∈ N.

The proof is complete by observing g([a, b]) ⊂ [a, b].

Proof. Proof of Theorem 1. By Lemma 3, consider the
discrete-time system as defined in eq. (5) for T = 1. By
assumption, the map g : X → X is topical and thus by
Lemma 1 it is non-expansive under the sup-norm. Trajectories
of sup-norm non-expansive maps have been proved either to
be all unbounded or to converge to a periodic point3: the
trajectory T (ξ) = (gk(ξ))k∈N starting at ξ ∈ X is said to
converge to the periodic point xξ if

lim
k→∞

gkp(ξ) = xξ,

where p ∈ N is the period of xξ. Since by assumption there
exists at least one equilibrium point xe ∈ F(g), then for any
point ξ ∈ X , there exists a periodic point xξ which the
trajectory through ξ converges to.

We claim that for topical systems possessing the additional
property of type-K monotonicity, all periodic points are equi-
librium points. This leads to the conclusion that the system
always converges to an equilibrium point that is stable due to
Lemma 4, thus completing the proof. In proof of the claim,
we make use of the concept of limit set of a point ξ ∈ X ,
which we denote by

Ω(ξ) = {xξ, g
1(xξ), · · · , gp−1(xξ)}.

3This was first proved by Lemmens in [45] and it can be found in its recent
book [44, Chapter 4].

Moreover, we consider the tightest lower bound
ℓ(ξ) = [ℓ1(ξ), · · · , ℓ|ξ|(ξ)] to such limit set, where |ξ|
denotes the number of components of ξ, whose formal
definition is given next

ℓi(ξ) = min
x∈Ω(ξ)

xi, ∀i = 1, . . . , |ξ|.

With these definitions, the claim “all periodic points are
equilibrium points" can be equivalently stated as follows

|Ω(ξ)| = 1, ∀ξ ∈ X , (6)

where |·| denotes the cardinality of a set. By definition of
ℓ(ξ), for any i = 1, . . . , |ξ| there exists y ∈ Ω(ξ) such that
ℓi(ξ) = yi. Thus, for each x ∈ Ω(ξ) either ℓi(ξ) < xi

or ℓi(ξ) = xi. Assume that ℓi(ξ) < xi. Since f is type-
K monotone, it holds ℓi(ξ) < fk

i (x) for all k ≥ 0. Since
x, y ∈ Ω(ξ), then there exists a k such that fk(x) = y, it
follows that ℓi(ξ) < yi, which is a contradiction. Thus, for
all x ∈ Ω(ξ) it holds that ℓi(ξ) = xi = yi, i.e., all points in
the limit set Ω(ξ) have the same i-th component. The same
reasoning holds for all components i = 1, . . . , |ξ|, thus proving
the claim in eq. (6) and completing the proof.

IV. HOW TO VERIFY K-TOPICALITY

A. K-topicality in continuous-time

Angeli and Sontag have proved that the plus-homogeneity
of a continuous-time system can be verified by only looking
at the function f , as remarked next.

Remark 1. [5, Lemma 3.1] A continuous-time system as in
eq. (4) on X ∈ Rn is plus-homogeneous if

f(ξ + α1) = f(ξ), ∀α ∈ R,∀ξ ∈ X .

On the other hand, verifying the monotonicity of a system
is not an easy task. For continuous-time dynamical systems
whose vector field is continuously differentiable, a necessary
and sufficient condition to ensure monotonicity is the well-
known Kamke condition, which dates back to the 30s and the
work of Kamke in [43], see Proposition 1.1 in [57]4.

Theorem 2 (Kamke condition). A continuous-time system as
in eq. (4) on X ∈ Rn is monotone if and only if for any two
points a, b ∈ X such that a ≤ b the following holds

∀i : ai = bi ⇒ fi(a) ≤ fi(b).

It should be noted that from the previous theorem it follows
that any scalar continuous-time system is monotone, since the
condition is satisfied trivially for n = 1.

Remark 2. Any scalar continuous-time system as in eq. (4)
on X ∈ R is monotone.

For continuous-time systems with a continuously differ-
entiable vector field, the Kamke condition turns out to be
equivalent to a specific sign structure of the Jacobian matrix,
see Remark 1.1 in [57] for a simple proof.

4Note that in standard books, such as those of Smith [57] and Coppel [14],
“monotonicity" is referred to as “type-K", even if this notation has been lost
in the current literature. In this paper, we recover the notation “type-K" with
a different meaning.
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Corollary 1. Consider a continuous-time system (4) on X ⊆
Rn whose vector field f is C1. The system is monotone if and
only if Jacobian matrix is Metzler, i.e.,

∂fi(x)

∂xj
≥ 0, i ̸= j, x ∈ X

In the following, we show that for a continuous-time system
whose vector field is continuously differentiable, monotonicity
is equivalent to type-K monotonicity, thus proving that the
same sign structure of the Jacobian matrix is also a necessary
and sufficient condition for type-K monotonicity.

Theorem 3. Consider a continuous-time system in X ⊆ Rn

with dynamics

ẋ(t) = f(x(t)), t ∈ R≥0. (7)

If the system is monotone and its vector field f is C1, then
the system is type-K monotone.

Proof. Consider a non-negative vector v ∈ Rn
≥0 and denote

by x(t) and z(t) the solutions of the monotone system in
eq. (7) at time t ∈ R with initial conditions x(0) ∈ Rn and
z(0) = x(0) + v, respectively, i.e.,

x(t) = φ(t, x(0)), z(t) = φ(t, x(0) + v),

where φ is the flow of the monotone system in eq. (7). Without
loss of generality, assume that both solutions x(t) and z(t)
exists in an interval [0, T ∗] with T ∗ ∈ R>0.

The monotonicity of the system implies that the order
between the initial conditions, x(0) ≤ z(0), must be preserved
by the solutions at all times, i.e.,

x(t) ≤ z(t), t ∈ [0, T ∗]. (8)

To prove the type-K monotonicity of the system, we need
to show that if there is a strict order in the i-th component,
i.e., xi(0) < zi(0), which is equivalent to vi > 0, then such
order is preserved at all times, i.e., for t ∈ [0, T ∗] it holds

vi > 0 ⇒ xi(t) < zi(t). (9)

At t = 0 eq. (9) holds because xi(0) < xi(0) + vi = zi(0).
Now, since f is C1, then both solutions x(t) and z(t) are also
C1, and thus there exists an interval of time [0, t∗) of positive
measure, i.e., 0 < t∗ ≤ T ∗, in which eq. (9) holds.

Finally, we aim to prove that eq. (9) holds for all t ∈ [0, T ∗]
by contradicting the following

∃ T ∈ [t∗, T ∗] : xi(T ) = zi(T ). (10)

Denoting a−i ∈ Rn−1 the vector of (n − 1) elements
obtained from vector a ∈ Rn by removing the i-th component,
i.e., a−i = [a1, . . . , ai−1, ai+1, . . . , an]

⊺, we can say that the
i-th component of x(t) is solution of the differential equation

ẋi(t) = fi(xi(t), x−i(t)). (11)

where x−i(t) is treated as an exogenous input. Similarly, the
i-th component of z(t) is solution of

żi(t) = fi(zi(t), z−i(t)).

Moreover, from the monotonicity of the system in eq.
(8), which implies z−i(t) ≥ x−i(t), and from Corol-
lary 1, which states that the map fi is a nondecreas-
ing function in all variables other than the i-th, i.e.,
fi(zi(t), z−i(t)) ≥ fi(zi(t), x−i(t)), it follows that zi(t) is
also a solution of the differential inequality

żi(t) ≥ fi(zi(t), x−i(t)). (12)

We now operate a time reversal and a time shif by let-
ting τ = T − t. We denote xrev

i (τ) = xi(T − τ) and
zrevi (τ) = zi(T − τ) the reversed solutions. By this change
of variables we compute

ẋrev
i (τ) =

dxrev
i (τ)

dτ
=

dxi(T − τ)

dτ
= −ẋi(T − τ),

and from eq. (11) we derive that xrev
i (τ) is solution of

ẋrev
i (τ) = −fi(x

rev
i (τ), xrev

−i (τ)). (13)

With similar steps, from eq. (12) we derive that zrevi (τ) is
a solution of

żrevi (τ) ≤ −fi(z
rev
i (τ), xrev

−i (τ)). (14)

Assuming that eq. (10) holds, at τ = 0 the two solutions
are equal, namely xrev

i (0) = zrevi (0), in fact

xrev
i (0) = xi(T ) = zi(T ) = zrevi (0),

and since zrevi (τ) is a solution of the differential inequal-
ity (14), while xrev

i (τ) is solution of (13), then

zrevi (τ) ≤ xrev
i (τ), τ ∈ [0, T ∗], (15)

which, at τ = T , leads to

zi(0) = zrevi (T ) ≤ xrev
i (T ) = xi(0).

This leads to a contradiction since vi > 0 by eq. (9) and
therefore zi(0) = xi(0) + vi > xi(0). Therefore, eq. (10)
does not hold, and eq. (9) holds instead for all t ∈ [0, T ∗],
completing the proof of the theorem.

Remark 3. It is important to remark that type-K monotonicity
always implies monotonicity, but not vice versa. In particular,
Theorem 3 leads to the following statements:

• f is type-K monotone ⇒ f is monotone;
• f is monotone and f ∈ C1 ⇒ f is type-K monotone;
• f is monotone and f /∈ C1 ̸⇒ f is type-K monotone.

The above remark emphasizes the role of Theorem 3,
which states that if a monotone continuous-time system has
a continuously differentiable vector field, then it is type-
K monotone. In other words, under the assumption of a
continuously differentiable vector field, all monotone systems
are also type-K monotone. Consequently, all results provided
in this paper for type-K monotone systems apply to smooth
monotone systems.

As a corollary to Theorem 2, we restate Corollary 1 in the
particular case of type-K monotone systems with continuously
differentiable vector fields.
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Corollary 2. Consider a continuous-time system (4) on X ⊆
Rn whose vector field f is C1. The system is type-K monotone
if and only if Jacobian matrix is Metzler, i.e.,

∂fi(x)

∂xj
≥ 0, i ̸= j, x ∈ X

B. K-topicality in discrete-time

Verifying the plus-homogeneity of a discrete-time system
by only looking at the function f can be done by directly
applying Definition 2, as remarked next.

Remark 4. A discrete-time system as in eq. (3) on X ⊆ Rn

is plus-homogeneous if and only if

f(ξ + α1) = f(ξ) + α1, ∀α ∈ R,∀ξ ∈ X .

As a counterpart to the Kamke condition given in Theo-
rem 2, we provide a necessary and sufficient condition for
type-K monotonicity in the case of discrete-time systems,
which we denote Kamke-like condition.

Theorem 4 (Kamke-like condition). A discrete-time system as
in eq. (4) on X ∈ Rn is monotone if and only if for any two
points a, b ∈ X the following holds

a ≤ b ⇒ fi(a) ≤ fi(b), (16)

and it is type-K monotone if and only if it further satisfies

∀i : ai < bi ⇒ fi(a) < fi(b). (17)

Proof. The solution of a discrete-time system at time k ∈
N is equal to the k-th composition of the map f , i.e.,
φ(k, ξ) = fk(ξ) for any ξ ∈ X . With this notion, the
proof is a straightforward application of Definition 3, where
φ(k, ξ) = fk(ξ).

For discrete-time systems with a continuously differentiable
vector field, the Kamke-like condition turns out to be equiva-
lent to a specific sign structure of the Jacobian matrix, similar
to what happens in continuous-time. A preliminary sufficient
condition was given in [17, Proposition 9], while next, we
provide a necessary and sufficient condition.

Theorem 5. Consider a discrete-time system as in eq. (3) on
X ⊆ Rn whose map f is C1. The system is type-K monotone
if and only if the Jacobian matrix is non-negative, i.e.,

∂fi(x)

∂xj
≥ 0, x ∈ X ,

with a strictly positive diagonal almost everywhere, i.e.,

∂fi(x)

∂xi
> 0 x ∈ X \ S,

where S is a set of measure zero.

Proof. Consider two vectors y, z ∈ X such that y ≤ z and,
without lack of generality, let v ∈ Rn

≥0 be such that z = y + v.
For any i = 1, . . . , n, we can compute the directional deriva-
tive of fi at y along v by means of the limit definition,

∇vfi(y) = lim
ε→0

fi(y + εv)− fi(y)

ε
. (18)

It follows that eq. (16) is equivalent to a non-
negative directional derivative ∂fi(y)/∂v ≥ 0, in fact
y ≤ y + εv ⇒ fi(y) ≤ fi(y + εv). Since f ∈ C1, we can
write the directional derivative in terms of partial derivatives,

∇vfi(y) =

n∑
j=1

∂fi(y)

∂xj
· vj
|v|

≥ 0, (19)

and noticing that the above relation must hold for any
v ∈ Rn

≥0, one infers that the non-negativeness of the Jacobian
matrix is necessary and sufficient for eq. (16). Now, eq. (17)
is equivalent to the fact that function fi is a strictly increasing
function with respect to the variable xi, which in turn is
equivalent to the requirement that the partial derivative of fi
with respect to xi can be zero at most in a set S of measure
zero in X , cfr. [61, Section I.1]. This completes the proof.

V. K-TOPICAL MULTI-AGENT SYSTEMS

In this section, we exploit the result presented in the
previous sections to study the stability of nonlinear K-topical
Multi-Agents Systems (MASs). As a special case, we provide
sufficient conditions enabling the agents to achieve consensus
asymptotically.

We consider MASs composed of n ∈ N agents modeled as
dynamical systems with scalar state xi(t) ∈ R whose pattern
of interaction is described by a directed graph G = (V, E), and
evolving either in discrete-time

xi(k + 1) = fi (xi(k), xj(k) : Ni) , k ∈ N. (20)

or in continuous-time

ẋi(t) = fi (xi(t), xj(t) : Ni) , t ∈ R, (21)

We first state our main result for discrete-time MASs.
This result provides necessary and sufficient conditions on
the local interaction rule fi of the single agent, which can
be different from the others, ensuring that the overall MAS
results to be a K-topical dynamical system, thus proving its
convergence to the equilibrium point set F ̸= ∅ by means
of Theorem 1. Moreover, we provide some extra sufficient
conditions ensuring that the equilibrium point set F coincides
with the consensus set

C = {α1 : α ∈ R}, (22)

thus solving the consensus problem for nonlinear K-topical
MASs. The proposed sufficient condition is graph theoretical
and based on the graph G describing the pattern of interconnec-
tions among the agents: it requires that there exists a globally
reachable node in G and that consensus states are equilibrium
points. We collect in the next lemma some useful intermediate
results which are instrumental to the proof of our main results.

Lemma 5. Consider a K-topical discrete-time system as in
eq. (3) on X ⊆ Rn whose map f is C1.Then:

(a) The Jacobian matrix Jf = {∂fi/∂xj} is stochastic
everywhere, i.e.,

Jf (ξ)1 = 1, ∀ξ ∈ X ;
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(b) The set of equilibrium points F is either empty or
closed and convex, i.e., for all x, y ∈ F then
αx+ (1− αy) ∈ F for all α ∈ [0, 1];

(c) If f(0) = 0 then all consensus points are equilibrium
points, i.e., C ⊆ F .

Proof. Statement (a) is proved by exploiting Remark 4 to the
definition directional derivative at ξ ∈ X along the vector
1 ∈ Rn, as follows,

Jf (ξ)1 = lim
h→0

f(ξ + h1)− f(ξ)

h

= lim
h→0

f(ξ) + h1− f(ξ)

h
= lim

h→0

h1

h
= 1.

Statement (b) is a straightforward application of [25, Theorem
1] in the euclidean normed space (X , ||·||∞).

Statement (c) is a consequence of the plus-homogeneity
property, in fact

f(0+ α1) = f(0) + α1, ∀α ∈ R,
⇓

f(α1) = α1, ∀α ∈ R.

Theorem 6 (Discrete-time MAS). Consider a discrete-time
MAS as in eq. (20) on X ⊆ Rn whose map is continuously
differentiable. If the set of local interaction rules fi : X → R,
with i = 1, . . . , n, satisfies the next conditions:
(i) ∂fi/∂xi > 0 and ∂fi/∂xj ≥ 0 a.e. for i ̸= j;
(ii) fi(x+ α) = fi(x) + α for any α ∈ R;
then the MAS converges asymptotically to one of its equilib-
rium points, if any, for any initial state x(0) ∈ X .

If it further satisfies
(iii) fi(0) = 0;
(iv) The graph G has a globally reachable node;
then the MAS converges asymptotically to a consensus state
for any initial state x(0) ∈ X .

Proof. The MAS is a K-topical system: condition (i) implies
type-K monotonicity by Theorem 5 and condition (ii) implies
plus-homogeneity, as underlined in Remark 4. If the system
has at least one equilibrium point, we can exploit the result in
Theorem 1 to establish that for any initial conditions x(0) ∈
X , the state trajectories of the MAS converge to one of its
equilibrium points in F , completing the first part of the proof.

If condition (iii) implies C ⊆ F by Lemma 5, we are going
to prove that condition (iv) further implies that C ≡ F . The
graph G is aperiodic due to condition (i) which ensures the
presence of a self-loop at each node and it contains a globally
reachable node due to condition (iv). Since the Jacobian
matrix Jf is row-stochastic everywhere by Lemma 5, we can
exploit the widely known Theorem 5.1 in [10] and conclude
that Jf has a simple unitary eigenvalue with corresponding
eigenvector equal to 1, unique up to a scaling factor. Now, as-
sume there exist an equilibrium point xe ̸= β1. By Lemma 5,
all points αxe + (1 − α)c1 with α ∈ [0, 1] and c ∈ R are
also equilibrium points due to the convexity of the set of
equilibrium points. Therefore, all consensus points c1 with

c ∈ R have two eigenvectors, the vector of ones 1 and the
vector xe. In other words, all consensus points have a unitary
eigenvalue with multiplicity strictly greater than one, which is
in contradiction with [10, Theorem 5.1]. Therefore, there does
not exist any point xe ∈ F \ X , completing the second part
of the proof.

In the next theorem, we exploit Lemma 3 to generalize the
previous result to continuous-time MASs.

Theorem 7 (Continuous-time MAS). Consider a continuous-
time MAS (21) on X ⊆ Rn whose vector field is continuously
differentiable. If the set of local interaction rules fi : X → R,
with i = 1, . . . , n, satisfies the next conditions:
(i) ∂fi/∂xj ≥ 0 for i ̸= j;
(ii) fi(x+ α) = fi(x) for any α ∈ R;
then the MAS converges asymptotically to one of its equilib-
rium points, if any, for any initial state x(0) ∈ X .

If it further satisfies
(iii) fi(0) = 0;
(iv) The graph G has a globally reachable node;
then the MAS converges asymptotically to a consensus state
for any initial state x(0) ∈ X .

Proof. The MAS is K-topical: condition (i) implies type-K
monotonicity by K Corollary 2 and condition (ii) implies
plus-homogeneity, as underlined in Remark 1. By means of
Lemma 3, we can study its asymptotic behavior by studying
the following discrete-time system

x(k + 1) = g(x(k)) = φ(1, x(k)), k ∈ N.

The proof is complete by noticing that all conditions (i)−
(iv) of Theorem 6 hold.

VI. EXAMPLES OF APPLICATION

A. The multiplicative framework

Topical systems are closely related to monotone homoge-
neous vector fields on the (strictly) positive orthant Rn

>0. The
whole space Rn can be put in bijective correspondence with
Rn

≥0 via the mutually inverse bijection exp : Rn → Rn
>0 and

log : Rn
>0 → Rn, which are to be intended as component-wise

operations (cfr. [44, Section 2.7]). If f : R → R is any self-
map of the real vector space, let g : Rn

>0 → Rn
>0 denote the

function g = exp ◦f ◦ log. The properties of exp and log show
that monotonicity and plus-homogeneity of a system ruled by
function f correspond to the following properties of a system
ruled by function g,

ξ1 ≤ ξ2 ⇒ φ(t, ξ1) ≤ φ(t, ξ2), ∀ξ1, ξ2 ∈ Rn
>0, (23)

φ(t, αξ) = αφ(t, ξ), ∀ξ ∈ Rn,∀α ∈ R≥0, (24)

While the monotonicity property in eq. (23) (as well as type-
K monotonicity) is naturally inherited, the plus-homogeneous
property corresponds to the homogeneity property in eq. (24).
Consequently, the results provided in this paper for K-topical
systems in Rn have equivalent multiplicative formulations, i.e.,
they apply to type-K monotone and homogeneous systems in
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X ⊆ Rn
≥0, both in discrete-time [17] and continuous-time. We

leave it to the reader to formulate any dual result.

B. Dynamical systems

Chemical reactions. The most studied case of K-topical
systems in continuous-time is that of well-mixed and isother-
mal chemical reactions [6], [40].

Let s(t) ∈ Rn denote the vector specifying the concen-
trations of m chemical species, Γ ∈ Rn → Rm be the
stoichiometry matrix and h : Rm

≥0 → Rn be a function which
provides the vector of reaction rates for any given vector of
concentrations, then the dynamics of the system is given by

ṡ(t) = Γh(s(t)).

Using the reaction coordinates x(t) such that s(t) = Γx(t),
the system dynamics becomes Γẋ(t) = Γh(Γx(t)), and one
can infer the stability of this system by studying the system

ẋ(t) = h(Γx(t)),

which is K-topical by Theorem 3: it is monotone and plus-
homogeneous, with continuously differentiable vector field.

Max-plus maps. Important examples of topical systems are
those ruled by max-plus maps. To introduce these maps let
R∞ = R∪{−∞} denote the max-plus semi-ring and let A =
{aij} be a n × n matrix with entries from R∞ and suppose
that for each i there exists j such that aij ̸= −∞. A max-plus
map f : Rn → Rn is defined by

fi(ξ) = max
j

{aij + xj}, ∀x ∈ Rn, i = 1, . . . , n.

It is easy to verify that discrete-time systems x(k + 1) =
f(x(k)) ruled by a max-plus map are K-topical. Applications
of max-plus maps arise in several fields, such as optimal
control [1],decentralized estimation [18], discrete event sys-
tems [34], and many others.

Stochastic games. Another remarkable example are
stochastic games, which are two-player zero-sum games [9],
[32] and go back to Shapley [56], [60]. The dynamic program-
ming method for computing the value of a stochastic game also
leads to a topical map.

Consider a two-player zero-sum game with finite state space
S = {1, . . . , n} and, for every state i ∈ S , action spaces
A1

i for player 1 and A2
i for player 2, transition probabil-

ities p(j|i, a1, a2) and transition payments r(i, a1, a2) with
i, j ∈ S, a1 ∈ A1

i and a2 ∈ A2
i .

Its study involves the Shapley operator given by

fi(x) = min
a1∈A1

i

max
a2∈A2

i

{r(i, a1, a2) +
∑
j∈S

p(j|i, a1, a2)xj},

where xi ∈ R denotes the final reward at state i ∈ S.
The reward at x(k) of the game after k steps is deter-
mined recursively, using dynamical programming principle
x(k + 1) = f(x(k)). It can be noticed that the Shapley op-
erator is both monotone and plus-homogeneous, and thus is
topical. Moreover, if the probability p(i|i, a1, a2) is positive,
which is a natural assumption, then the system is also type-K
monotone and thus K-topical.

Remark 5. A smooth version of the max-function used in the
previous examples, which does not affect the K-topicality, can
be obtained through the approximation shown next, usually
called softmax [29],

α-max(x) =

∑n
i=1 xie

αxi∑n
i=1 e

αxi
, α > 0,

for which limα→∞ α-max(x) = max(x).

C. Multi-agent systems

The most common consensus algorithms for discrete and
continuous-time single-integrator multi-agent systems

ẋi(t) = ui, xi(k + 1) = xi(k) + εiui(t). (25)

with ε > 0 are given by the following control input

ui =
∑
j∈Ni

(xj − xi) . (26)

It is easy to verify that the standard consensus protocol
makes the system K-topical. Many variations of eq. (26)
have been proposed in several applications, such as formation
control in multi-vehicle systems [24], the modeling of the
emergent flocking behavior [62], optimization algorithms [50],
and many others. It is remarkable that K-topicality is preserved
if one considers nonlinearities of the following type[49]5,

ui =
∑
j∈Ni

hij (xj − xi) , (27)

under some mild conditions discussed next. We point out that
the generality of our approach allows the local interaction rule
of the agents to be possibly different from the others, thus en-
abling the study of heterogeneous multi-agent systems, which
is still today a topic of great interest in our community [23],
[67], [69].

(Continuous-time) It has been proved that the system in
eq. (25) with the linear protocol in eq. (26) converges to a
consensus state if the graph G possesses a globally reachable
node [10, Theorem 7.4]. By means of Theorem 7 we directly
generalize this result by considering the nonlinear protocol in
eq. (27) couplings hij : R → R satisfying

•
∂

∂xj
hij ≥ 0 for all j ̸= i and i ∈ V;

• hij(0) = 0 for all i, j ∈ V .
A similar result is given in [68], where in addition the vector

field of the global system is required to meet an extra strict
sub-tangentiality condition. It is clear that if the maps are taken
as the identity map hij(x) = x, then protocol reduces to the
linear one in eq. (26).

(Discrete-time) The convergence properties of the system in
eq. (25) with the linear protocol in eq. (26) depends on the
parameter ε and the topological structure of G [10, Theorem
5.1]. In particular, the system reaches consensus if the graph
possesses a globally reachable node belonging to an aperiodic
component, and if εi <

∣∣N−1
i

∣∣.
5Similar results hold also if the nonlinearity is applied after the summation

is operated, ui = hi

(∑
j∈Ni

(xj − xi)
)

, [65].
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The condition on ε ensures that the state transition matrix
is row-stochastic and nonnegative. In a similar way, one can
find a condition on ε ensuring that the map f given the
nonlinear protocol in eq. (27) is plus-homogeneous and type-K
monotone, given by

εi <

[
|Ni|

∂

∂xi
hij

]−1

.

Such property, jointly with the two presented in the previous
paragraph, allows to exploit Theorem 6 and prove convergence
to a consensus state of the system.

Bounded control inputs. As the first example of ap-
plication, consider the case wherein the control inputs are
constrained by a saturating effect [52], [64], [66]. The problem
of designing proper saturating functions hij such that the
consensus protocols are yet qualifiable can be solved by the
use of the following function

hij(x) = si

(
1− e−mix

1 + e−mix

)
, ∀j ∈ Ni

with si,mi > 0, which is easily proved to be K-topical6.
Notably, the proposed function encompasses several well-

known saturating functions:
• hij(x) = tanh(x) if si = 1 and m = 2;
• hij(x) = sign(x) if si = 1 and m → ∞;

Theorems 6-7 ensures that a multi-agent system wherein the
agents are subject to the above described saturated control
action achieves consensus if the underlying graph contains a
globally reachable node.

Kuramoto Oscillators. The emergence of synchronization
or desynchronization in networks of coupled oscillators is
another interesting example [19], [22].

Here, we consider a network of oscillators with the same
natural frequency whose angular velocities xi(t) coupled
through their phase differences according to a graph G and
coupling functions hij . Weakly-coupled identical limit-cycle
oscillators can be well approximated by this canonical model
through a phase reduction and averaging analysis, with ap-
propriate coupling functions hij that are closely related to
the phase response curve of the oscillators. Since the phase
response curve is a function computed on the periodic limit
cycle, it is 2π-periodic and so are the coupling functions hij .

Theorem 7 constitutes a new analysis tool for studying
synchronization in such networks, where the couplings can
be directed and heterogeneous, while they must met the next
condition,

d

dθ
hij(θ) =

{
> 0 θ ∈ (−α, α)

< 0 θ ∈ (−π,−α) ∪ (α, π)
, (28)

with α ∈ [0, π] and hij(0) = 0. It is easy to notice that
letting a, b be any real numbers such that 0 ≤ b − a ≤ α,
then Theorem 7 holds for X = [a, b]n ⊂ Rn. In fact, X is
an invariant space wherein all conditions of the theorem are
satisfied if the graph is also assumed to contain a globally
reachable node.

6Note that for the discrete-time case it is further required that εi <
[0.5 ·mi · si|Ni|]−1.

VII. CONCLUDING REMARKS

In this work, we have provided a self-contained analysis
of smooth K-topical dynamical system. These systems have
been proved to have very nice behavior, avoiding periodic
trajectories and eventually converging to equilibrium points.

We have further investigated the application of these results
in the context of multi-agent systems (MASs). K-topicality of
the MAS has been shown to be verifiable by only looking at
the local interaction rules of the agents. Moreover, standard
connectivity conditions on the graph describing the interac-
tions among the agents have been proved to be sufficient to
solve the consensus problem in nonlinear K-topical MASs.

This manuscript creates a link bridging monotone dy-
namical systems theory [6] and nonlinear Perron–Frobenius
theory [44], by getting rid of the usual notion of strong
monotonicity assumption, while focusing on continuously dif-
ferentiable systems. Moreover, this manuscript paves the way
to a variety of lines of research in the context of multi-agent
systems which will retrace those investigated for standard
linear consensus.
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