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Scenarios

Peer-to-Peer Networks Wireless Sensor Networks

Multi-Robot Systems
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Problem set-up

Undirected network → G = (V,E)

Set of agents → V = {1, . . . , n}

Set of interactions → E ⊆ V × V

State of agent i → xi ∈ R
Reference signal of agent i → ui ∈ R

Neighbors of agent i → Ni = {j ∣ (i, j) ∈ E}

Framework → Discrete-time k ∈ N

i j

ui uj

xi(k) = fi (ui(k), xi(k − 1), xj(k − 1) ∶ j ∈ Ni) , i ∈ V (1)

Objective

The agents must cooperate to track the time-varying maximum value of the reference signals,

u(k) =max{u1(k), . . . , un(k)}.
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Literature

Definition: Dynamic consensus problem

Design the local interaction rules fi such that the agents’ state xi converges to a scalar function
g ∶ Rn

→ R of the reference signals u1, . . . , un, i.e., there exists ε ≥ 0 such that

∥xi(k) − g(u1(k), . . . , un(k))∥ ≤ ε, k ≥ k∗, i ∈ V,

The average (sum of values of a data set divided by number of values):
● Spanos, Olfati-Saber, and Murray, “Dynamic consensus on mobile networks”, in IFAC World Congr. (2005)

● Freeman, Yang, and Lynch, “Stability and convergence properties of dynamic average consensus estimators”, in IEEE 45th Conf. on Dec. and
Control (2006)

● Zhu and Martinez, “Discrete-time dynamic average consensus”, in Automatica (2010)

● Chen, Cao and Ren, “Distributed average tracking of multiple time-varying reference signals with bounded derivatives”, in IEEE Trans.
Autom. Control (2012).

● Kia, Cortés, and Martinez “Dynamic average consensus under limited control authority and privacy requirements”, in Int. Journal of Robust
and Nonlin. Control (2015)

● Scoy, Freeman, and Lynch, “A fast robust nonlinear dynamic average consensus estimator in discrete time”, in 5th IFAC NecSys (2015)

● Franceschelli, and Gasparri, “Multi-stage discrete time and randomized dynamic average consensus”, in Automatica (2019)

● George and Freeman, “Robust dynamic average consensus algorithms”, in IEEE Trans. Autom. Control (2019)

● Montijano E. and J.I., Sagues, and Martinez, “Robust discrete time dynamic average consensus”, in IEEE Trans. Autom. Control (2019)

● Kia, Scoy, Cortés, Freeman, Lynch and Martinez, “Tutorial on dynamic average consensus: The problem, its applications, and the algorithms”,
in IEEE Control Systems Magazine (2019).
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IEEE Robot. and Autom. Lett. (2020).

● Yu, Chen and Kar, “Dynamic median consensus over random networks”, in IEEE 60th Conf. on Dec. and Control (2021).
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The maximum (highest value of a data set).
● Deplano, Franceschelli, Giua, “Discrete-time Dynamic consensus on the max value”, in 15th European Workshop on Advanced Control and

Diagnosis, Springer (2021)

● Deplano, Franceschelli, and Giua, “Dynamic min and max consensus and size estimation of anonymous multi-agent networks”, in IEEE Trans.
Autom. Control (2021, in press).

● Sen, Sahoo, and Slingh, “Global max-tracking of multiple time-varying signals using a distributed protocol”, in IEEE Control and Sys. Lett.
(2022)
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Main contributions

Contribution 1

A novel protocol to solve the dynamic max-consensus problem with the following features:

● Robustness to re-initialization;

● Scalability in large networks;

● Self-tuning logic for arbitrary small steady state error;

● Boundedness of the tracking error.

Contribution 2

A novel algorithm to track graph’s parameters tracking problems in open time-varying networks:

● Cardinality, the number of agents in a network;

● Radius/diameter, the length of the minimum/maximum distance between the agents.
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Applications

Possible applications of the proposed protocol range across different fields:

● Real-time monitoring in decentralized systems;
Simpson-Porco and Bullo, “Distributed monitoring of voltage collapse sensitivity indices”, in IEEE Trans. Smart Grid (2016)

● Network’s parameter estimation in anonymous networks;
Garin, Varagnolo, and Johansson, “Distributed estimation of diameter, radius and eccentricities in anonymous networks”, in 3rd IFAC NecSys

(2012)

Varagnolo, Pillonetto, and Schenato, “Distributed cardinality estimation in anonymous networks”, in IEEE Trans. Autom. Control (2013)

● Online optimization in distributed systems;
Jiang and Charalambous, “Distributed ADMM using finite-time exact ratio consensus in digraphs”, in European Control Conf. (2021)

Bastianello and Carli, “ADMM for Dynamic Average Consensus Over Imperfect Networks”, in 9th IFAC Necsys (2022)

● Distributed synchronization in wireless sensor networks;
Z. Dengchang et al., “Time synchronization in wireless sensor networks using max and average consensus protocol” (2013)

● Leader election in multi-agent systems;
T. Borsche and S. A. Attia, “On leader election in multi-agent control systems” (2010)

● and many others...
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The proposed protocol

STDMC Protocol: Self-Tuning Dynamic Max-Consensus

(Input): Tuning parameters αmax
≥ αmin

> 0.
(Initialization): xi(0) ∈ R for i ∈ V;

αi(0) ∈ {α
min, αmax

} for i ∈ V
(Execution): for k = 1,2,3, . . . each node i does

1) Gather xj(k − 1) and αj(k − 1) from each neighbor j ∈ Ni

2) Update the current state according to

xi(k) = max
j∈Ni∪{i}

{xj(k − 1) − αj(k − 1), ui(k)}

3) Update the current parameter according to

αi(k) =

⎧
⎪⎪
⎨
⎪⎪
⎩

αmax if xi(k) < xi(k − 1)

αmin otherwise
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A simple example

1 2 3

u1 u2 u2

Initial conditions

u1(0) = 1, x1(0) = 0, α1(0) = 0

u2(0) = 2, x2(0) = 2, α2(0) = 0

u3(0) = 3, x3(0) = 5, α3(0) = 0

Parameters

αmax
= 0.2, αmin

= 10−8
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Working assumption

Assumption 1

The variation of the reference signals ui(k) are bounded a constant Π ≥ 0, i.e., for k ≥ 0 it holds

∆ui(k) = ∣ui(k) − ui(k − 1)∣ ≤ Π

Any continuous-time signal with bounded derivative can be over-sampled to reduce its absolute
variation.
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Main results

Theorem 1: Tracking error of STDMC Protocol

Consider time-varying reference signals ui(k) ∈ R under Assumption 1 and let δG be the diameter of
graph G. If G is connected and if

αmax
> Π, (2)

then ∃Tc ≥ 0 such that the tracking error ei(k) of each agent is bounded by εtr, i.e., for k ≥ Tc it holds

ei(k) = ∣xi(k) − u(k)∣ ≤ εtr = (α
max
+Π)δG , i ∈ V (3)

and moreover

Tc ≤max{
x(0) − u(0)

αmax
−Π

, δG} . (4)

Theorem 2: Steady-state error of STDMC Protocol

If the reference signals remain constant for k ≥ k0, then the steady state error ei(k) of each agent is
bounded by εss, i.e., for k ≥ k0 + 2δG by εss,

ei(k) = ∣xi(k) − u(k)∣ ≤ εss = α
minδG , i ∈ V. (5)
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Main results

Theorem 3: Tracking error when the bound Π is unknown

If the agents update their local parameter αmax
i according to

αmax
i (k) = max

j∈Ni∪{i}
{αmax

j (k − 1), θ ⋅∆ui(k)}, θ > 1, (6)

then ∃Tc ≥ 0 such that the tracking error ei(k) is bounded for k ≥ Tc by the following

ei(k) = ∣xi(k) − u(k)∣ ≤ (θ + 1)ΠδG = εtr, i ∈ V. (7)
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Piece-wise linear inputs - Line graph of 6 nodes

... αmax
= 0.0310−8 αmin

= 0.0110−8 Π = 0.0210−8 εtr = 0.2510
−8 εss = 0.0510

−8

Arbitrary small steady state error!
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Piece-wise linear inputs - Line graph of 6 nodes

... αmax
= 0.0310−8 αmin

= 1 ⋅ 10−8 Π = 0.0210−8 εtr = 0.2510
−8 εss = 5 ⋅ 10

−8

Arbitrary small steady state error!
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Piece-wise linear inputs - Line graph of 6 nodes

... αmax
= 0.0610−8 αmin

= 1 ⋅ 10−8 Π = 0.0210−8 εtr = 0.4010
−8 εss = 5 ⋅ 10

−8

Faster convergence rate! But higher tracking error...
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ŝ(
k
)

εtr εss xi(k)

Diego Deplano University of Cagliari, Italy

Dynamic Max-Consensus with Local Self-Tuning 11 / 14



Problem statement and motivation Self-Tuning Dynamic Max-Consensus (STDMC) Protocol Numerical simulations and applications Conclusions and future perspectives

Unknown bound Π - Line graph of 6 nodes

αmax
i (0) = 0.0110−8 αmin

= 1 ⋅ 10−8 Π = 0.0210−8 θ = 1.110−8 εtr = 0.2210
−8 εss = 5 ⋅ 10

−8

The assumption αmax
i (0) > Π is not satisfied!
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Application to graph’s parameters estimation - Random graph of n ∈ [80,100] nodes

αmax
= 0.1, αmin

= 10−12, cardinality s(k), diameter d(k), radius r(k)
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ŝ(
k
)

d(k), r(k) d̂(k), r̂(k)

● Deplano, Franceschelli, and Giua, “Dynamic min and max consensus and size estimation of anonymous multi-agent networks”, in IEEE Trans.
Autom. Control (2021, in press).

● Deplano, Franceschelli, and Giua, “Distributed tracking of graph parameters in anonymous networks with time-varying topology”, in IEEE
60th Conf. on Dec. and Control (2021).

● Varagnolo, Pillonetto, and Schenato, “Distributed cardinality estimation in anonymous networks”, in IEEE Trans. Autom. Control (2013).
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Conclusions and future directions

Contributions:

● The STDMC protocol solving the dynamic max-consensus (or max-tracking) problem;

● Theoretical characterization of tracking and steady-state errors, as well as convergence time;

● Employment to track time-varying graphs’ parameters in open networks.

Potential extensions:

● Reference signals with unbounded variations;

● Noise in the measurements;

● Delays in the communications.

Future application perspectives:

● Core-periphery structure detection;

● Distributed online optimization algorithms;

● ...
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Thank you for your attention!

Diego Deplano

Email: diego.deplano@unica.it
Webpage: https://sites.google.com/view/deplanodiego/
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