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Abstract: This work describes a novel control protocol for multi-agent systems to solve the
dynamic max-consensus problem. In this problem, each agent has access to an external time-
varying signal and has the objective to estimate and track the maximum among all these signals
by exploiting only local communications. The main strength of the proposed protocol is that it
is able to self-tune its internal parameters in order to achieve an arbitrary small steady-state
error without significantly affecting the convergence time. We also employ the proposed protocol
in the context of distributed graph parameter estimations, such as size, diameter, and radius.
We also provide simulations in the scenario of open multi-agent systems.
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1. INTRODUCTION

In the context of multi-agent systems, there has been a
significant interest in the design of distributed algorithms
to solve the so-called consensus or agreement problem.

Problem of interest and motivation. The consensus
problem consists in the design of local interaction rule driv-
ing the agents to agree upon a common value of interest.
Historically, such common value has been considered to
be a function of the initial state of the agents. More more
recently a variation of the problem that goes by the name
of dynamic consensus problem has been considered, where
the agents are required to converge to a state value which
is a function of local time-varying reference signals fed to
the agents. The current literature has paid major attention
to the average value, for which Kia et al. (2019) have
provided an insightful tutorial paper, but also other quan-
tities have received some attention, such as the median
value (Sanai Dashti et al., 2019; Vasiljevic et al., 2020),
and the max/min value (Deplano et al., 2021b).

In a recent paper (Deplano et al., 2021b) we considered
the previously unexplored dynamic max/min-consensus
problem, which is also the focus of this paper. We propose
an improved protocol for dynamic max/min-consensus
that allows the designer to decouple convergence rate and
steady-state error: this provides a way to jointly increase
convergence rate and decrease steady-state error. Applica-
tions of max/min-consensus protocols are various and di-
versified, including monitoring and optimization (Iutzeler
et al., 2012); distributed synchronization, such as time-
synchronization (Dengchang et al., 2013) and target track-
ing (Petitti et al., 2011); network parameter estimation,
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such as cardinality (Lucchese et al., 2015), diameter and
radius (Garin et al., 2012; Oliva et al., 2016; Deplano et al.,
2021a), as well as highest/lowest node degree (Borsche and
Attia, 2010).

Related literature. The standard max-consensus pro-
tocols can be traced back to the works of Tahbaz-Salehi
and Jadbabaie (2006) and Cortés (2008), in continuous-
time and discrete-time frameworks, respectively. Since
then, different approaches and settings were considered,
such as switching topologies (Nejad et al., 2010), second-
order dynamics (Zhang and Li, 2018), asynchronous, de-
layed and noisy communications (Agrawal et al., 2019;
Muniraju et al., 2019), gossip-based or randomized ap-
proaches (Tutzeler et al., 2012; Franceschelli and Gasparri,
2019), as well as open multi-agent systems (Abdelrahim
et al., 2017), anonymous and resilient networks (Wang
et al., 2018; Muniraju et al., 2019; Shang, 2020). The dy-
namic version of the max-consensus problem has recently
been studied by us in (Deplano et al., 2021b), wherein two
protocols are presented: one achieves bounded tracking
and steady-state error, while the other one achieves zero
steady-state error but requires a high memory burden.

Main contributions. In this paper, we provide a self-
tuning version of the protocol we have previously proposed
in (Deplano et al., 2021b) to solve the dynamic max-
consensus problem. The main novel features are:

e Tracking and steady-state errors are decoupled by
design;

e The protocol achieves bounded steady-state error
that can be made arbitrarily small;

e The protocol achieves bounded tracking error that
can be traded-off for improved convergence time;

e The memory burden does not increase with the di-
mension of the network.



As a second contribution, we employ the proposed protocol
in the context of open multi-agent systems in order to es-
timate and track some important time-varying parameters
of the network, such as the number of agents, the radius,
and the diameter. More precisely, we equip the algorithms
proposed in (Deplano et al., 2021a) and (Deplano et al.,
2021b) with the protocol proposed in this paper achieving
the following improvements:

e The size-estimation technique employed in (Deplano
et al., 2021b) is highly sensitive to the steady-state
error of the dynamic max-consensus protocol, a prob-
lem that is completely solved by employing the pro-
tocol proposed in this paper.

e The radius/diameter estimation technique employed
in (Deplano et al., 2021a) does make use of a static
version of the max-consensus protocol, which requires
a centralized step. The implementation of the novel
protocol allows to avoid such a centralized step and
enables the employment of the algorithm in the case
of open multi-agent systems.

Structure of the paper. Section 2 presents the notation
used throughout the paper along with some theoretical
preliminaries. Section 3 presents our self-tuning dynamic
max-consensus (STDMC) protocol. In Section 3.1 the
dynamic max/min-consensus problem is formalized along
with the main working assumptions. In Section 3.2 the
proposed protocol is along with its theoretical character-
ization. In Section 4 we provide numerical simulations
validating our results. Concluding remarks are given in
Section 5.

2. NOTATION AND PRELIMINARIES

We denote by R and N the sets of real numbers and positive
integer numbers, respectively. Maximum and minimum of
a vector v = [v1,...,0,]T, with m € N, are denoted by

U= max v,
1=1,....m

v= min v;. (1)
1=1,....m
We consider networks modeled by undirected graphs G =
(V,E), where V. = {1,...,n} with n € N is the set of
nodes, and £ C V x V is the set of edges connecting
the nodes. The state and the input of the i-th agent are
denoted by z; € R™ and u; € R, respectively.

A path between two nodes i, j € V in a graph is a sequence
of consecutive edges m; = (i,p),(p,q),-..,(r,s),(s,7)
where each successive edge shares a node with its predeces-
sor. An undirected graph G is said to be connected if there
exists a path m;; between any pair of nodes 7,5 € V. The
diameter dg of a graph G is defined as the length (number
of edges) of the longest shortest path between any pair of
nodes in the graph.

Nodes ¢ and j are neighbors if there exists an edge
(i,j) € E, which represents a point-to-point communica-
tion channel between nodes ¢ and j. The set of neighbors of
the i-th node is denoted by N; = {j € V : (i,j) € E}. For
sake of simplicity, we consider graphs without self-loops,

ie., i € N;, and define N? = N; U {i}.

3. SELF-TUNING DYNAMIC MAX-CONSENSUS
(STDMC) PROTOCOL

8.1 Problem statement and working assumptions

Consider a network of m agents modeled as discrete-
time dynamical systems with scalar state z; € R for
t =1,...,n. The i-th agent has access to a time-varying
reference signal u; € R and interacts with other agents
according to an undirected graph G = (V, E) and a local
interaction rule

afi(k?) = fi(ui(k)a

The dynamic maz-consensus problem consists in the design
of proper local interaction rules f;(-) for estimating and
tracking the maximum (k) € R among the time-varying
reference signals. The performance can be expressed in
terms of the convergence time and the tracking error

zj(k—1):j € NY). (2)

e(k) = max [z;(k) — u(k)]. (3)
icV
Our only assumption concerns the boundedness of the
reference signals’ variation, which is deemed a reasonable
assumption in the dynamic consensus literature. We define
the variation of the reference signals in one step as
Au;(k) = ui(k) —u;j(k—1), VieV. (4)
and, in a similar way, we define the variation of the
maximum among the reference signals as

Au(k) =u(k) —u(k — 1). (5)
Assumption 1. The maximum absolute variation of the

reference signals in one step is bounded by a constant
II>0,ie.,

|Aw; (k)| <TI, VieV, Vk>0. (6)

3.2 Proposed self-tuning protocol

When the reference signals are assumed to be constant
over time, i.e., u(k) = u(0) for all k¥ € N, the problem can
be recast as a standard max-consensus problem by

zi(0) = us(0),  (7)

which has been proved to converge in finite-time and with
zero error (Tahbaz-Salehi and Jadbabaie, 2006). Instead,
when the reference signals are assumed to be time-varying,
the strategy we have previously proposed (Deplano et al.,
2021b) modifies the above interaction rule into

zi(k) = max{z;(k —1)},

x;(k) = max {z;(k — 1) — a,u;(k)}. (8)

where o > 0 is a design parameter. Such protocol has been
proved to converge in finite-time and with bounded error,
both depending on the parameter «. More precisely, the
parameter « trades-off tracking and steady-state errors for
convergence time, with larger values of « leading to higher
converges rate but also higher errors, and vice versa.



STDMC Protocol :
SELF-TUNING DYNAMIC MAX-CONSENSUS

(Input): Tuning parameters o™** > oM™~ > 0.
(Initialization): z;(0) € R for i € V;
a;(0) € {a™*, oMY} fori e V
(Execution): for k =1,2,3,... each node i does
Gather z;(k — 1) and a;(k — 1) from each
neighbor j € N;(k — 1)
Update the current state according to
zi(k) = max {w;(k — 1) — oj(k — 1), ui(k)}
JEN?
Update the current parameter according to
ai(k) = oM it (k) < xi(k—1)

oMY otherwise

The strategy proposed in this paper is that of equipping
the update rule in eq. (8) with local and self-tuning
parameters «; (k) for i € V| as follows

wi(k) = ma {a; (k= 1) =y (k= D w(B)}, - (9)

Intuitively, one can expect that the parameters «; should
take large values when the maximum input varies and
the tracking task becomes the priority, while they should
take arbitrarily small values when the maximum input
remains constant and the estimation accuracy becomes
more important. This is correct, and we further clarify
this qualitative reasoning by discussing the following two
cases.:

e The maximum input @ is higher than all states x;.
In this case, the agent 7 with the maximum input
u; = u updates its state to uw, regardless of the value of
«;. Thus, the parameter a; can be an arbitrarily small
value. Note that in this case, the state of the agent 4
increases (or remains the same) after the update.

e The maximum input @ is lower than all states x;.

In this case, each agent ¢ update its state to the max-
imum among z; — «; with j € N;, which depends on
the parameters a;. Thus, the parameters o; must be
sufficiently large in order to guarantee the tracking of
the maximum input. Note that in this case, the state
of the agents eventually decreases if the maximum
input continues decreasing. This process stops when
the input remains constant (or increases) and the first
case holds instead.

As a consequence of the above discussion, we propose
to make the parameters «; switch between two design
parameters oM** > o™~ > 0 according to

oM if xy (k) < xi(k—1)
(k) = i i )
ai(k) {aMIN otherwise

(10)
Due to the above update rule, if the state of agent i is
decreasing, then its local parameter «; is set to a high
value o™** in order to speed up the convergence toward
the maximum input that has a smaller value. Contrarily,
if the state of agent ¢ is increasing or constant, then its
local parameter «; is set to a small value o™~ in order to
improve the estimation accuracy.

We describe the steps required to implement the inter-
action rule (9) with the local self-tuning (10) in the
STDMC Protocol, shown in the column on the left, while
the next theorem characterizes its convergence time and
tracking error.

Theorem 1. Consider a multi-agent system executing the
STDMC Protocol under Assumption 1 and let & = 0 be
the initial time. If graph G is connected and if

oM > I, (11)

then there exists a convergence time T, > 0 such that the
tracking error is bounded for k > T, by

e(k) < (™ +10)dg,
where dg is the diameter of graph G, and it holds

Z(dg) —u(dg)

(12)

T. < dg + max{ (13)

Proof sketch of Theorem 1. It can be shown! that
there exists a convergence time 7. > 0 such that the
maximum and minimum among the agents’ state for
k > T, are bounded by the following

z(k) < u(k) + (I — a"™)sg (14)
z(k) > a(k) — (I + a™*%)dg. (15)

The bound (14) comes from the consideration that if
u(k) > T(k), then due to the update rule in eq. (9) it must
hold Z(k + 1) = u(k + 1). otherwise, if the w(k) < z(k)
then their distance at subsequent times depends on their
maximum variations. In the worst case, the maximum
state decreases by oM™ for dg steps and the maximum
input decreases by II, leading to the bound in eq. (14).
Indeed, after dg steps, all the parameters «; are update to
aM** according to the self-tuning in eq. (10), and thus the
distance becomes smaller after dg steps. The bound (15)
comes from the consideration that the maximum distance
between the minimum state z and the maximum input =
occurs when during the tracking all «; are set to o™** and
the input suddenly reverses behavior and start increasing
with maximum variation II. Thus, their maximum distance
is proportional to IT+ a™** but after at most dg steps the
a; are set to ™™ according to the self-tuning in eq. (10),
and thus the distance becomes smaller after dg steps.

Note that the convergence time T is upper bounded by the
diameter of the network, which is the largest time needed
by the network to complete the cascade update. Indeed,
dg is the length of the longest shortest path between any
pair of agents. Now, at time k = Jg two cases may occur:

e T(dg) < u(dg). In this case, both bounds in eqs. (14)-
(15) hold, and thus T, < dg.

o T(dg) > T(dg). In this case, the maximum state
T decreases with rate o™** and, in the worst case,
the maximum input decreases with rate II. Due
to eq. (11), then there exists a time 7’ such that
Z(0g + T") <u(dg +T") and T. < dg + T, given by

Tf:max{x(‘*g*w,o}.

aMAX . H (16)

1 For the convenience of the reviewers, formal proofs of the bounds
in egs. (14)-(15)-(16) are given in Appendix A, which is available at
(Deplano et al., 2022).



From the above discussion one can verify the upper bound
to the convergence time given in eq. (13). Now, exploiting
the upper bound in eq. (14) and the lower bound in
eq. (15), the bound on the tracking error can be derived
for k > dg + 1" as follows

e(k) = max |2;(k) —u(k)|
1€
= max{|z(k) — u(k)|, lz(k) — u(k)[}
< max{(II — a™)dg, (IT + a™*¥*)dg }
S (H + aMAX)(sg,
completing the proof. O

The characterization provided in Theorem 1 reveals that
the convergence time is inversely proportional to oM**,
while the tracking error is directly proportional to «
Therefore, o™** trades off convergence time for tracking
error. On the other hand, the parameter o™ does not
affect either, but it does affect the steady-state error in
the case of constant inputs, as formalized next.

MAX

Theorem 2. Consider a generic time ko > T,.. The estima-
tion error for Theorem 1, in the case all reference signals
remain constant for k > kg, satisfies the next condition

e(k) < ™™g, k > ko + 24g. (17)
Proof. By Theorem 1, it holds
u(k) < z(k) <u(k) + (II — &™™)dg, k>T..

From the proof of Theorem 1, if the above upper bound
holds strictly at k, i.e., (k) = u(k) + (II — a™™)dg, then:

o All a;(k) are exactly equal to aM*¥;

e (k) is decreasing, i.e., u(k) < u(k — dg).

In the worst-case scenario, this is the case at k = ko,
since then the inputs remain constant and equal to u (ko).
Therefore, the maximum input starts decreasing at each
time step by a factor o until the maximum input @ (ko)
is reached. This process takes exactly dg steps, as it is
shown next,

T(ko +£) = T(ko) — L™ <t(ko)
f(ko + E) k’o) + ( MIN)ég _ paMAx Sﬂ(/fo)
(H a]\“N)é’g SEQI\AAX
__MIN
H I\'I(zéx 5g Se
o

and since (IT — o™N)/aM** € (0,1), it follows that the
smallest value satisfying the above inequality is ¢ = dg.

Now, once dg steps have elapsed, the parameter of the
agent with the maximum input is updated to ™™ due to
the self-tuning rule in eq. (10) for & > ko + dg. Due to the
local interaction rule in eq. (9), its 1-hop neighbors update
their state to either Z(k) —a* with o* € {a™¥, &™**} or to
their own input u;. In both cases, according to the update
rule in eq. (10), at subsequent instant of times their local
parameter is updated to the value of o™~. The cascade
effect updates all parameters «; with i € V to o™" in at
most dg steps. We conclude that

ﬂ(ko) > f(k) > &(k‘) = ﬂ(k) — OzMIN(Sg, k> ko+ 25g,
from which the statement of the theorem follows. O

4. NUMERICAL SIMULATIONS

We test the results for the STDMC Protocol by considering
the worst-case scenario of a network with line topology,
which maximizes the number of steps needed to make the
information flow through the network, that is g =n — 1
steps, thus maximizing the bound on both the tracking
and the steady-state errors.

4.1 Example 1: convergence time and steady-state error

We show in Fig. 1 the time-evolution of a network
with n = 10 agents in a line configuration, with diameter
d0g =9, executing the STDMC Protocol. The agents are
uniformly initialized within [0, 1], the reference signals
remain constant and equal to 0, except for the 6-th input
that is initialized at ug(0) = 0.5 and varies according to

us(k+1) = {ZZE:; -

where II = 0.02 is the maximum absolute variation as in
Assumption 1. The parameters of the STDMC Protocol
are chosen accordingly to Theorem 1 and are given by

if k € [100, 110)
otherwise '

MAX

=0.022 > 1I, "™ =0.005.

This example allows to verify the validity of the bound
ess on the steady-state error given Theorem 2. Indeed,
all inputs remain constant for & > 110 and the bound
€ss = aMNdg = 0.045 is satisfied for k > kg + 20g = 128.

T T
- ﬁ is unknown _|

- ITis known |
a(k) a

COLOLOQ
O NWE IO 00 O~
= =

State trajectories x;(k)

| |
70 80 90 100

0 10 20 30 40 50 60
1 T T T T T T T T T
= ---- 1II is unknown
< 0.8 |- ---- IIis known
;5 —
E 0.6 :\ ......... €ss n
204t ety =
%‘ \\\ \\\
E 0.2 \-—~\\ N A /,"‘ B
0 ................ prrene e q V(..}»,ir,/_ % I T 1
0 10 20 30 40 50 60 70 80 90 100
Step k

Fig. 1. FEzample 1: Evolution of a network with line
topology running the STDMC Protocol. € and ¢4, are
the bound on the tracking and steady-state error.



4.2 Ezample 2: tracking error and comparison with non
self-tuning dynamic maz-consensus

We compare in Figs. 2-3 the time-evolution of a network
with n = 10 agents in a line configuration executing the
STDMC Protocol with self-tuning and without self-tuning.
The agents are uniformly initialized in the interval [0, 1.5]
and all reference signals remain constant and equal to —1,
except for the 6-th agent. The input of the agent 6 is
initialized at ug(0) = 0.5 and varies according to

u(k) — 10 if k € [100, 150)
ug(k+1) = ug(k) +II if k € [200,250) .
ug(k) otherwise

where IT = 0.02 is the maximum absolute variation as in
Assumption 1. In Fig. 2, we show the estimation result
provided by the STDMC Protocol when the self-tuning is
designed, accordingly to Theorem 1, as shown next

M =0.022 > 11, oM =10""'2

Instead, in Fig. 2, we show the estimation result provided
by the STDMC Protocol when the self-tuning is disabled,
which amounts to the DMC Protocol previously proposed
by us in (Deplano et al., 2021b) with constant parameter
a = 0.022. Tt is straightforward to notice how the self-
tuning logic improves the accuracy of the estimation,
without affecting the convergence time. By looking at
Fig. 2, one can also validate the characterization of the
STDMC Protocol provided in Theorems 1-2. In particular,
it can be verified that the tracking error is always bounded
by e = (Il + a**¥)dg = 0.378, and, more importantly, that
the steady state error is almost nullified by the choice
oMY = 10712 at k € [66, 100] U [209, 300].

10 50 100 150 200 250 300
= —c o (‘-:ss S e(k:?
0.8 .
0.6 - .
0.4 |- : 8
02| D |
S A S S A
0 50 100 150 200 250 300
Step k

Fig. 2. Example 2: Evolution of the network in Example 2
running the STDMC Protocol.

4.8 Ezample 3: graph parameters estimation in open
multi-agent systems

In the third simulation shown in Fig. 4, we employ the pro-
posed protocol as a subroutine of the algorithms presented
in our previous works (Deplano et al., 2021a,b) for the
estimation and track of some important graph parameters
in open multi-agent systems, wherein the agents may join
and leave as time goes by. For the convenience of the
reviewers, we detail both these algorithms in the unified
SDR Protocol presented in Appendix B, which is available
at (Deplano et al., 2022). In particular, the algorithms
enable to track the following time-varying parameters:

e Size s(k): the number of agents within the network;

e Radius d(k): The length of the minimum distance
between any pair of agents in the network;

e Diameter d(k): The length of the maximum distance
between any pair of agents in the network.

We consider a network of n < 100 agents that are allowed
to join and leave the network every T = 200 time steps,
as well as establishing or closing communications with
other agents. This leads to a network with a time-varying
number of nodes, as well as time-varying diameter and
radius. We denote by §(k), d(k), #(k) their estimations.
The parameters are set as shown next

=10""2=0.

aMAX _ 1071’ OCMIN

Fig. 4 (top) shows the estimation §(k) (red dashed curve)
of the network’s size s(k) (blue solid curve), showing how
the algorithm is capable of tracking changes of the time-
varying size, with fast convergence rate ruled by parameter

oM and high accuracy ruled by «

MIN

_10 510 1(30 150 260 2;')0 300
y — 5‘ ......... fss N e(kz?
08 .
0.6 1
0.4 |- P .
0.2 freeene \.\\....’,. _______ \...............,," ............. \.\ ______________ -
0 \‘L’I 1\‘ ----- { ! !
0 50 100 150 200 250 300
Step k

Fig. 3. Example 2: Evolution of the network in Example 2
running the STDMC Protocol without self-tuning.



We also show the estimation when the non self-tuning
dynamic max-consensus (DMC) Protocol proposed in (De-
plano et al., 2021b) is employed (green dashed curve),
which amounts to select aM** = oM = a*. In order to
provide a fair comparison, we select the good trade-off
a* = 10~*. The comparison reveals that the employment
of the STDMC Protocol allows achieving both higher

convergence rate and accuracy. Fig. 4 (bottom) shows the

estimations d(k), é(k) (red dashed curve) of the network’s
diameter and radius d(k),r(k) (blue solid curve), respec-
tively. Since the diameter is always greater or equal to the
radius, the curves on top refer to the diameter estimation
while the curves below refer to the radius estimation. Note
that we cannot provide a comparison with the original
algorithm proposed in (Deplano et al., 2021a), since it
cannot be employed in an open network setting without
the self-tuning logic proposed in this paper.

5. CONCLUSIONS

We have proposed the self-tuning dynamic max-consensus
(STDMC) Protocol, which enables the agents to track the
time-varying maximum value of a set of reference signals
given as inputs to the agents. As the name suggests, it
is capable of self-tune some internal parameters in order
to minimize both tracking and steady-state errors, which
are decoupled by design. We further provided simulations
when the STDMC Protocol is employed as a subroutine
of two state-of-art algorithms to track size, the diameter,
and the radius of the network in open and time-varying
multi-agent systems.

110
— 100 -
~
& 90
g ®
70
.g 601 " without self-tuning |
ﬁ ---- with self-tuning
50 k- s(k) N
40 1 | | [ | |
0 200 400 600 800 1,0001,2001,400
= 10 T T T T T T
~— 9 [~ T | ( B
O N 1
= ! N N ]
(VE |- 1 l_'ﬁl —
% ) 7||L ] '||‘I IL, - ;
9 4 ] IJI 1 _I_I..I B
= 3 .
g 2 1:* ---- with self-tuning =
& (1) L_J d(k)’xr(k) I I I I |
0 200 400 600 800 1,0001,2001,400

Step k

Fig. 4. Fzample 3: Estimation and tracking of the size
(top) and radius/diameter (bottom) in an open multi-
agent system running the protocols proposed in (De-
plano et al., 2021a,b) implementing the STDMC Pro-
tocol as a subroutine. NB: the green curve shows the
estimation without the self-tuning logic.
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