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What is an agent?

“Agents are computational systems that inhabit some complex dynamic environment, sense and act
autonomously in this environment, and by doing so realize a set of goals or tasks for which they are

designed.”

P. Maess, “Artificial life meets entertainment: Life like autonomous agents”, Communications of the ACM, 1995.
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What is an agent? Some examples

Self-driving car

Player

Human’s opinion

Computational unit
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Model of the agent: dynamical system

state
x(t) or x(k)

input
u(t) u(k)

y(t) y(k)
output

An agent is modeled as a dynamical system with a state-space representation:

● Continuous time (CT): ẋ(t) = f(y(t), u(t)) and y(t) = h(x(t)) with t ∈ R;
● Discrete time (DT): x(k + 1) = f(y(k), u(k)) and y(k) = h(x(k)) with k ∈ N.
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What is a multi-agent system?

“A multi-agent system is a coupled network of agents that work together to find answers to problems
that are beyond the individual capabilities or knowledge of each agent.”

P. Stone, M. Veloso, “Multiagent systems: A survey from a machine learning perspective”, Autonomous Robots, 2000.
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What is a multi-agent system? Some examples

Multi-Robot control

Game theory

Social opinion dynamics

Optimization theory
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Model of the network: graph

A network of agents is modeled with a graph G = (V,E) where:
● V ⊂ N is the set of nodes (grey circles) modeling the agents;

● E ⊆ V × V is the set of edges (black lines) modeling the flow information among agents.
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Working assumptions

We consider Multi-Agents Systems (MASs) under the following working assumptions:

● Discrete time framework: k ∈ N;
● A number of agents equal to n ∈ N;
● Scalar agents: xi(k) ∈ R;
● Autonomous agents: ui(k) = 0 for all k;

● Identity output map: yi(k) = xi(k);
● Fixed directed interaction graph G = (V,E);
● Nonlinear differentiable local interaction protocol fi ∶ Rn → R;

Thus, the dynamics of each agent is

xi(k + 1) = fi(xi(k), xj(k) ∶ j ∈ Ni), ∀i ∈ V, k ∈ N. (1)

while the dynamics of the overall system is

x(k + 1) = f(x(k)), ∀k ∈ N. (2)
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An example of multi-agent system modeling

Network → G = (V,E)
Set of agents → V = {1,2,3}

Set of interactions → E ⊆ {(1,2), (2,1), (2,3)}
Neighbors → N1 = {2}, N2 = {1,3}, N3 = ∅

State of agent i → xi(k) ∈ R
State of the system → x(k) ∈ Rn

Framework → Discrete time k ∈ N

1

2

3

Linear interactions:

x1(k + 1) = a1,1 ⋅ x1(k) + a1,2 ⋅ x2(k),
x2(k + 1) = a2,1 ⋅ x1(k) + a2,2 ⋅ x2(k) + a1,2a1,3 ⋅ x3(k),
x3(k + 1) = a3,3 ⋅ x3(k).

Let A = {ai,j} be the matrix formed by the coefficients ai,j , then the MAS evolves according to

x(k + 1) = f(x(k)) = Ax(k).

Diego Deplano University of Cagliari, Italy

Stability of Nonlinear Monotone Systems and Consensus in Multi-Agent Networks 8 / 39



Introduction Analysis of nonlinear MASs Conclusions and future directions
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Set of interactions → E ⊆ {(1,2), (2,1), (2,3)}
Neighbors → N1 = {2}, N2 = {1,3}, N3 = ∅

State of agent i → xi(k) ∈ R
State of the system → x(k) ∈ Rn

Framework → Discrete time k ∈ N

1

2

3

Nonlinear interactions:

x1(k + 1) = f1(x1(k), x2(k)),
x2(k + 1) = f2(x1(k), x2(k), x3(k)),
x3(k + 1) = f3(x3(k)).

Each function fi, with i ∈ V, is called the local interaction protocol of agent i, thus

x(k + 1) = f(x(k)) = [f1(⋅), f2(⋅), f3(⋅)]⊺.
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Main problem of interest

Definition: Consensus problem

The consensus problem consists in the design of a set of local interaction protocols fi such that each
agent converges to the same constant state, i.e.,

lim
k→∞

x(k)∝ 1,

for any initial condition x(0) ∈ Rn.

Note that 1⊺ = [1, 1, ⋯, 1]⊺ denotes a vector of ones of opportune dimension.
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Motivation and contribution

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Classical Perron-Frobenius Theory
deals with non-negative matrices A.

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Nonlinear Perron-Frobenius Theory
deals with monotone and positive maps f .

For consensus more properties are needed

A is row-stochastic
+

A is indecomposable and aperiodic
⇓

lim
k→∞

x(k) = lim
k→∞

Akx(0)∝ 1

?

lim
k→∞

x(k) = lim
k→∞

fk(x(0))∝ 1

B. Lemmens and R. D. Nussbaum, “Nonlinear Perron-Frobenius Theory”, 2012.
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Monotone and positive maps

Definition: monotonicity

A map f ∶ Rn → Rn is said to be monotone if for all x, y ∈ Rn it holds

x ≤ y⇒ f(x) ≤ f(y).

nothing

2 4 6

2

4

6

x y

f(x)

f(y)

f(y)

f(y)

R

R

nothing
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Monotone and positive maps

Definition: monotonicity

A map f ∶ Rn → Rn is said to be monotone if for all x, y ∈ Rn it holds

x ≤ y⇒ f(x) ≤ f(y).

nothing
N.B. Monotonicity does
not concern the trajectory!
Consider the scalar system

x(k+1) = αx(k), α ∈ (0,1),

then f(x) < x, ∀x ≥ 0.
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How to verify it?
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Monotone and positive maps

Solutions of monotone systems preserve the ordering between the initial conditions

Example in R

Consider the scalar system
x(k + 1) = x3(k).

The solution for x(0) = a is fk(a) = a2k. Thus, for two initial conditions a ≤ b, it holds

fk(a) = a3k ≤ b3k = fk(b), k ∈ N.

Let a = 1.1 and b = 1.2, then the trajectories are

a)
k=0«
1.1 →

k=1
¬
1.33 →

k=2
¬
2.36 →

k=3

13.11 → ⋯

b) 1.2
°
k=0
→ 1.73
±
k=1
→ 5.16
±
k=2
→ 137.4
²
k=3

→ ⋯
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Monotone and positive maps

Solutions of monotone systems preserve the ordering between the initial conditions

Example in R2

Consider the vector system

x(k + 1) = Ax(k) = [0 1
1 0

]x(t).

The solution for x(0) = a is fk(a) = Aka. Thus, for two initial conditions a ≤ b, then

fk(a) = Aka ≤ Akb = fk(b), k ∈ N.

Let a = [1,2]⊺ and b = [1,3]⊺, then the trajectories are

a)

k=0«
[1
2
] →

k=1«
[2
1
] →

k=2«
[1
2
] → ⋯

b) [1
3
]

°
k=0

→ [3
1
]

°
k=1

→ [1
3
]

°
k=2

→ ⋯
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Monotone and positive maps

Definition: monotonicity

A map f ∶ Rn → Rn is said to be monotone if for all x, y ∈ Rn it holds

x ≤ y⇒ f(x) ≤ f(y).

Definition: positivity

A map f ∶ Rn → Rn is said to be positive if for all x ∈ Rn
≥0 it holds f(x) ∈ Rn

≥0, , i.e.,

f(Rn
≥0) ⊆ Rn

≥0.

For a linear map f(x) = Ax, monotonicity
is equivalent to positivity, in fact

A is non-negative

� �
f(x) is monotone f(x) is positive.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A nonlinear monotone map f(x) is posi-
tive if and only if f(0) ≥ 0.

Since we are looking for a stable consensus
manifold, we will assume that

f(0) = 0.

Diego Deplano University of Cagliari, Italy

Stability of Nonlinear Monotone Systems and Consensus in Multi-Agent Networks 13 / 39



Introduction Analysis of nonlinear MASs Conclusions and future directions

Monotone and positive maps

Definition: monotonicity

A map f ∶ Rn → Rn is said to be monotone if for all x, y ∈ Rn it holds

x ≤ y⇒ f(x) ≤ f(y).

Definition: positivity

A map f ∶ Rn → Rn is said to be positive if for all x ∈ Rn
≥0 it holds f(x) ∈ Rn

≥0, , i.e.,

f(Rn
≥0) ⊆ Rn

≥0.

For a linear map f(x) = Ax, monotonicity
is equivalent to positivity, in fact

A is non-negative

� �
f(x) is monotone f(x) is positive.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A nonlinear monotone map f(x) is posi-
tive if and only if f(0) ≥ 0.

Since we are looking for a stable consensus
manifold, we will assume that

f(0) = 0.

Diego Deplano University of Cagliari, Italy

Stability of Nonlinear Monotone Systems and Consensus in Multi-Agent Networks 13 / 39



Introduction Analysis of nonlinear MASs Conclusions and future directions

Monotone and positive maps

Definition: monotonicity

A map f ∶ Rn → Rn is said to be monotone if for all x, y ∈ Rn it holds

x ≤ y⇒ f(x) ≤ f(y).

Definition: positivity

A map f ∶ Rn → Rn is said to be positive if for all x ∈ Rn
≥0 it holds f(x) ∈ Rn

≥0, , i.e.,

f(Rn
≥0) ⊆ Rn

≥0.

For a linear map f(x) = Ax, monotonicity
is equivalent to positivity, in fact

A is non-negative

� �
f(x) is monotone f(x) is positive.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A nonlinear monotone map f(x) is posi-
tive if and only if f(0) ≥ 0.

Since we are looking for a stable consensus
manifold, we will assume that

f(0) = 0.

Diego Deplano University of Cagliari, Italy

Stability of Nonlinear Monotone Systems and Consensus in Multi-Agent Networks 13 / 39



Introduction Analysis of nonlinear MASs Conclusions and future directions

Monotone and positive maps

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Conditions for reaching consensus

A is non-negative
+

A is row-stochastic
+

A is indecomposable and aperiodic
⇓

lim
k→∞

Akx(0)∝ 1

f is monotone and f(0) = 0
+

f is plus-homogeneous
+
?
⇓

lim
k→∞

fk(x(0))∝ 1
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Plus-homogeneous maps

Definition: Plus-homogeneity

A map f ∶ Rn → Rn is said to be plus-homogeneous if for all x ∈ Rn and α ∈ R it holds

f(x + α1) = f(x) + α1

nothing

2 4 6

2

4

6

x

f(x)
x + 1

f(x) + 1

R

R

nothing
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Plus-homogeneous maps

Definition: Plus-homogeneity

A map f ∶ Rn → Rn is said to be plus-homogeneous if for all x ∈ Rn and α ∈ R it holds

f(x + α1) = f(x) + α1

Definition: Row-stochastic

Consider a linear map f(x) = Ax ∶ Rn → Rn. A non-negative matrix A is said to be row-stochastic if
all its row sums are equal to one, i.e.,

A1 = 1.

A linear map f(x) = Ax is plus-homogeneous if and only if matrix A is row-stochastic, in fact

f(x + α1) = Ax + αA1 = Ax + α1 = f(x) + α1.
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Plus-homogeneous maps

Solutions of plus-homogeneous systems are invariant to rigid transformations

Example in R2

Consider the system [x, y]⊺ ∈ R2

x(k + 1) =max{x(k) + 1, y(k) − 2}, y(k + 1) = x(k) + 2.

This function is plus-homogeneous since for any initial condition a = [a1, a2]⊺ ∈ R2 satisfies

f(a + α1) = [max{a1 + 1, a2 − 2} + α
a1 + 2 + α ] = f(a) + α, ∀α ∈ R, k ∈ N.

Let a = [1,5]⊺ and b = a + 1 = [2,6]⊺, then the trajectories are

a)

k=0«
[1
5
] →

k=1«
[3
3
] →

k=2«
[4
5
] →

k=3«
[5
6
] → ⋯

b) [2
6
]

°
k=0

→ [4
4
]

°
k=1

→ [5
6
]

°
k=2

→ [6
7
]

°
k=3

→ ⋯
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Plus-homogeneous maps

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Conditions for reaching consensus

A is non-negative
+

A is row-stochastic
+

A is indecomposable and aperiodic
⇓

lim
k→∞

Akx(0)∝ 1

f is monotone and f(0) = 0
+

f is plus-homogeneous
+
?
⇓

lim
k→∞

fk(x(0))∝ 1
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Graph theory

Definition: Indecomposability and aperiodicity

A row-stochastic matrix A ∈ Rn ×Rn is said to be indecomposable and aperiodic if

A∞ = lim
k→∞

Ak

exists and all the rows of A∞ are the same.

Definition: Graph associated to a linear map

Consider a linear map f(x) = Ax ∶ Rn → Rn. The graph G(A) = (V,E) associated to matrix A = {ai,j}
is defined by:

● A set of nodes V = {1, . . . , n};
● A set of edges E ⊂ V × V, such that

(i, j) ∈ E if aij ≠ 0,

where aij denotes the element in the i-th row and j-th column of matrix A.

J. Wolfowitz, ”Products of indecomposable, aperiodic, stochastic matrices”, 1963.
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Graph theory

Definition: Connectivity properties of directed graphs

● A directed graph G is strongly connected if there exists a directed path from any node to any
other node;

● A directed graph G has a sink component if there exists a subgraph which is strongly connected
and have not any outgoing edge.

● A sink component is said to be:
● globally reachable if it can be reached from any other node by traversing a directed path;
● aperiodic if the greatest common divisor of the lengths of all its cycles is equal to one.

A is indecomposabile and aperiodic

⇕

G(A) has a globally reachable and aperiodic sink component.

Question: How a graph is defined in terms of a nonlinear map f?

1

2 3

4

5
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Graph theory

Definition: Graph associated to a nonlinear map which is differentiable almost everywhere

Given a nonlinear map f ∶ Rn → Rn, let J(x) = {Ji,j(x)} be its jacobian matrix at x ∈ Rn, i.e.,

Ji,j(x) =
∂fi
∂xj

Then, the associated graph G(f) = (V,E) is defined by:

● A set of nodes V = {1, . . . , n};
● A set of edges E ⊂ V × V, such that

(i, j) ∈ E if Ji,j(x) ≠ 0, ∀x ∈ Rn ∖ S,

where S is a set of measure zero.
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Graph theory

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Conditions for reaching consensus

A is non-negative
+

A is row-stochastic
+

G(A) has a sink component being
globally reachable and aperiodic

⇓

lim
k→∞

Akx(0)∝ 1

f is monotone and f(0) = 0
+

f is plus-homogeneous
+

G(f) has a sink component being
globally reachable and aperiodic

⇓

lim
k→∞

fk(x(0))∝ 1

This remains as a conjecture!
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Graph theory

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Conditions for reaching consensus

A is non-negative
+

A is row-stochastic
+

G(A) has a sink component being
globally reachable and aperiodic

⇓

lim
k→∞

Akx(0)∝ 1

f is type-K monotone and f(0) = 0
+

f is plus-homogeneous
+

G(f) has a sink component being
globally reachable and aperiodic

⇓

lim
k→∞

fk(x(0))∝ 1

This has been proved!
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Type-K monotone maps

Definition: Type-K monotonicity

An monotone map f ∶ Rn → Rn is said to be type-K if for all x ≤ y such that x ≠ y it holds:

xi < yi ⇒ fi(x) < fi(y), ∀i ∈ {1, . . . , n}

2 4 6

2

4

6

x y

f(x)

f(y)

f(y)

f(y)

R

R
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Type-K monotone maps

Definition: Strong monotonicity

An monotone map f ∶ Rn → Rn is said to be strong if for all x ≤ y, x ≠ y it holds:

fi(x) < fi(y), ∀i ∈ {1, . . . , n}

N.B. Type-K monotonicity

is more general than strong

monotonicity, for which a

vast literature already ex-

ists.
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Type-K monotone maps

Strong monotonicity ⇒ Type-K monotonicity ⇒ Monotonicity

Hint: Every converse relations does not hold

Let f ∶ R2 → R2, then:

● f(x, y) = (y, x) is monotone but not type-K monotone;

● g(x, y) = ((x + y)/2, y) is type-K monotone but not strongly monotone.

Hint: Type-K monotonicity rules out periodic behavior

Consider the systems
x(k + 1) = f(x(k)), y(k + 1) = g(y(k)),

Let the same initial condition x(0) = y(0) = [1, 2]⊺, the trajectories of the systems are

x(k) ∶ x(0) = [1
2
]→ [2

1
]→ [1

2
]→ [2

1
]→ ⋯(periodic point of period p = 2)

y(k) ∶ y(0) = [1
2
]→ [1.5

2
]→ [1.75

2
]→ [1.875

2
]→ ⋯→ [2

2
] (fixed point)

Note that in these examples the maps f and g are also plus-homogeneous.
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Type-K monotone maps

Linear
Multi-Agent Systems

x(k + 1) = Ax(k)

Nonlinear
Multi-Agent Systems

x(k + 1) = f(x(k))

Conditions for reaching consensus

A is non-negative
+

A is row-stochastic
+

G(A) has a sink component being
globally reachable and aperiodic

⇓

lim
k→∞

Akx(0)∝ 1

f is type-K monotone and f(0) = 0
+

f is plus-homogeneous
+

G(f) has a sink component being
globally reachable

⇓

lim
k→∞

fk(x(0))∝ 1
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Nonlinear consensus theorems

Theorem: Convergence to consensus

Let map f ∶ Rn → Rn be type-K monotone and plus-homogeneous and let f(0) = 0. If graph G(f)
possesses a globally reachable node, then all trajectories converge to a consensus, i.e.,

lim
k→∞

fk(x)∝ 1 ∀x ∈ Rn.

Proof Sketch:

1 If the map f is monotone and plus-homogeneous then it nonexpansive w.r.t. the sup-norm, namely

∥f(x) − f(y)∥∞ ≤ ∥x − y∥∞, ∀x, y ∈ Rn.

2 Trajectories generated by sup-norm nonexpansive maps either are all unbounded, or all converge
to some periodic orbit.

3 Type-K monotonicity prevents periodic orbit.

4 Since there is at least a fixed point f(0) = 0, then the consensus points are fixed pointsx.

5 If the graph possesses a globally reachable node, then the only fixed points of f are the consensus
points.

Problem: How to apply this result in Multi-Agent Systems?
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Nonlinear consensus theorems

Theorem: Local criteria for consensus in discrete-time

Consider a discrete-time MAS, where agents have dynamics

xi(k + 1) = fi(xi(k), xj(k) ∶ j ∈ Ni).

If the set of differentiable local interaction rules fi ∶ Rn → R, with i = 1, . . . , n, satisfy the next
conditions:

1 ∂fi/∂xi > 0 and ∂fi/∂xj ≥ 0 for i ≠ j (type-K monotonicity);

2 fi(x + α1) = fi(x) + α for any α ∈ R (plus-homogeneity);

3 fi(0) = 0 (positivity);

4 Graph G(f) possesses a globally reachable node;

then the MAS converges asymptotically to a consensus state for any initial state x(0) ∈ R.
D. Deplano, M. Franceschelli, and A. Giua, “A nonlinear Perron–Frobenius approach for stability and consensus of discrete-time
multi-agent systems”, in Automatica (2021).

D. Deplano, M. Franceschelli, and A. Giua, “Novel Stability Conditions for Nonlinear Monotone Systems and Consensus in

Multi-Agent Networks”, in IEEE Transaction on Automatic Control (2023).
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Nonlinear consensus theorems

Discrete-time Systems

Kamke-like condition

The map f of a discrete-time system

x(k + 1) = f(x(k))

is type-K monotone if and only if
its Jacobian matrix is Metzler with strictly positive

diagonal elements,

∂fi
∂xi
> 0, ∂fi

∂xj
≥ 0 for i ≠ j

Continuous-time Systems

Kamke condition

The map f of a continuous-time system

ẋ(t) = f(x(t))

is monotone if and only if
its Jacobian matrix is Metzler,

∂fi
∂xj

≥ 0 for i ≠ j

E. Kamke. “Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II.” Acta Mathematica, 1932.”
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Continuous-time Systems

Theorem

Consider a continuous-time dynamical system ẋ(t) = f(x(t)) such that f is C1. Then, the system is
monotone if and only if the system is type-K monotone.

If f is not C1, then monotonicity /⇒ type-K monotone:

ẋ(t) = −sign(x), with solution φ(t, x0) =
⎧⎪⎪⎨⎪⎪⎩

x0 − sign(x0) ⋅ t if t < ∣x0∣
0 if t ≥ ∣x0∣

, for x(0) = x0.

If the system evolves in discrete-time, then monotonicity /⇒ type-K monotone:

x(k + 1) = [0 1
1 0

]
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

A

x(k), with solution φ(k, x0) =
⎧⎪⎪⎨⎪⎪⎩

x0 if k is odd

Ax0 if k is even
, for x(0) = x0.
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Continuous-time Systems

Theorem

Consider a continuous-time dynamical system ẋ(t) = f(x(t)) such that f is C1. Then, the system is
monotone if and only if the system is type-K monotone.

If f is not C1, then monotonicity /⇒ type-K monotone:

ẋ(t) = −sign(x), with solution φ(t, x0) =
⎧⎪⎪⎨⎪⎪⎩

x0 − sign(x0) ⋅ t if t < ∣x0∣
0 if t ≥ ∣x0∣

, for x(0) = x0.

If the system evolves in discrete-time, then monotonicity /⇒ type-K monotone:

x(k + 1) = [0 1
1 0

]
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

A

x(k), with solution φ(k, x0) =
⎧⎪⎪⎨⎪⎪⎩

x0 if k is odd

Ax0 if k is even
, for x(0) = x0.
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Continuous-time Systems

Discrete-time Systems

Kamke-like condition

The map f of a discrete-time system

x(k + 1) = f(x(k))

is type-K monotone if and only if
its Jacobian matrix is Metzler with strictly positive

diagonal elements,

∂fi
∂xi
> 0, ∂fi

∂xj
≥ 0 for i ≠ j

Continuous-time Systems

Kamke condition

The map f of a continuous-time system

ẋ(t) = f(x(t))

is type-K monotone if and only if
its Jacobian matrix is Metzler,

∂fi
∂xj

≥ 0 for i ≠ j

E. Kamke. “Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II.” Acta Mathematica, 1932.”
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Continuous-time Systems

Theorem: Local criteria for consensus in continuous-time

Consider a continuous-time MAS, where agents have dynamics

ẋi(t) = fi(xi(t), xj(t) ∶ j ∈ Ni).

If the set of differentiable local interaction rules fi ∶ Rn → R, with i = 1, . . . , n, satisfy the next
conditions:

1 ∂fi/∂xj ≥ 0 for i ≠ j (type-K monotonicity);

2 fi(x + α1) = fi(x) for any α ∈ R (plus-homogeneity);

3 fi(x) = 0 if xi = xj for all j ∈ Ni (positivity);

4 Graph G(f) possesses a globally reachable node;

then the MAS converges asymptotically to a consensus state for any initial state x(0) ∈ R.
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Applications

D. Deplano, M. Franceschelli, and A. Giua, “A nonlinear Perron–Frobenius approach for stability and consensus of discrete-time
multi-agent systems”, in Automatica (2021).

D. Deplano, M. Franceschelli, and A. Giua, “Novel Stability Conditions for Nonlinear Monotone Systems and Consensus in
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Applications

Multi-Agent Networks”, in IEEE Transaction on Automatic Control (2023).
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Applications

A general class of nonlinear protocols for achieving consensus

The proposed theory apply to all networks of single integrator agents with dynamics

xi(k + 1) = xi(k) + εi ∑
j∈Ni

hi (xj(k) − xi(k))

where the functions hi ∶ R→ R satisfy the following

1 hi(0) = 0
2

d
dx

hi(x) ≥ 0 with εi < (∣Ni∣ ddxhi(x))
−1

for all x ∈ R;

Remarks

1 Functions hi can be heterogeneous among the agents;

2 Note that plus-homogeneity always holds since the functions take as input only state-differences of
the agents; in fact, (xj(k) + α) − (xi(k) + α) = xj(k) − xi(k);

3 If the functions hi are taken as the identity map hi(x) = x and ε = εi, then the protocol reduces
to the well-known Laplacian dynamics x(k + 1) = (I − εL)x(k).

Diego Deplano University of Cagliari, Italy

Stability of Nonlinear Monotone Systems and Consensus in Multi-Agent Networks 33 / 39



Introduction Analysis of nonlinear MASs Conclusions and future directions

Applications

Example: Bounded control input

Consider the following dynamics

xi(k + 1) = xi(k) + εi ∑
j∈Ni

hi (xj(k) − xi(k))

where hi are saturating function of the form

sati(x) = (
1 − e−mix

1 + e−mix
) , mi ≥ 0.

Such saturating functions encompass several well-
known saturating functions, notably:

● hi = tanh if mi = 2;
● hi ≈ sign if mi →∞.

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

x

sa
t i
(x
)

x tanh(x) sign(x)
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Applications

Example: Bounded control input

Theorem: Consensus with bounded input

A network of n agents with dynamics

xi(k + 1) = xi(k) + εi ∑
j∈Ni

⎛
⎝
1 − e−mi(xj(k)−xi(k))

1 + e−mi(xj(k)−xi(k))
⎞
⎠
, si,mi ≥ 0

achieve consensus asymptotically for all x(0) ∈ Rn if:

● Parameter εi satisfies εi < 2
mi ∣Ni ∣ ;

● Graph G(f) possesses a globally reachable node.

● Type-K monotonicity is satisfied since
● ∂fi/∂xj ≥ 0 for all j ≠ i;
● ∂fi/∂xi > 0 if it holds εi <

2
mi ∣Ni ∣ ;

● Plus-homogeneity is satisfied since the local control action takes into account only state
differences, in fact (xj(k) + α) − (xi(k) + α) = xj(k) − xi(k);

● Positivity is satisfied since hi(0) = 0.
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Applications

Example: Bounded control input - 10 agents in a line network

hi(x) = x hi(x) = tanh(x) hi(x) ≈ sign(x)
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Applications

Continuous-time: chemical reaction networks

Consider the following set of chemical reactions [R0] representing an enzymatic futile cycle

ṡ(t) = Γh(s(t)), with Γ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 1
0 1 −1 0
−1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, h(s) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2s3s1 − k1s5
k3s5

k4s4s2 − k5s6
k6s6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ki ≥ 0.

Noting that s(t) ≥ 0, we study the system in the space of “reaction coordinates” x(t)
ẋ(t) = h(σ + Γx(t)), with s(t) = σ + Γx(t), and σ ∈ Rn

≥0,

that is such that:
● Γ has zero row-sums, i.e., Γ1 = 0 (plus-homogeneity);
● The Jacobian of h(σ + Γx(t)) is Metzler (type-K monotonicity), indeed:

Jh =
∂h

∂x
∣
σ+Γx=s

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ k1 + k2s1 0 k2s3
k3 ∗ 0 0
0 k4s4 ∗ k5 + k4s2
0 0 k6 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

[R0] Angeli and Sontag, “Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles”, in Nonlinear Analysis: Real World App., (2008).
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Main contributions

Contribution for general dynamical systems

Introduction of type-K monotonicity and its characterization for smooth systems:

● Type-K monotonicity can be verified by the sign-structure of the Jacobian matrix (see Theorem 5 in [R1]
see Proposition 9 in [R2]);

● Trajectories of smooth type-K monotone and plus-homogeneous systems asymptotically converge toward
equilibrium points (see Theorem 1 in [R1] and Theorem 13 in [R2]);

● Smooth monotone systems in continuous-time are also type-K monotone (see Theorem 3 in [R1]), while
this is not true in discrete-time (see Remark 7 in [R2] and Proposition 1 in [R1]).

Contribution for Multi-Agent Systems (MASs)

Application to consensus:

● A MAS achieves consensus asymptotically if it is type-K monotone, if it is plus-homogeneous, and if the
graph contains a globally reachable node (see Theorem 6 in [R1] and Theorem 14 in [R2] for the
discrete-time case and Corollary 1 in [R1] for the continuous-time case).

[R1] D. Deplano, M. Franceschelli, and A. Giua, “Novel Stability Conditions for Nonlinear Monotone Systems and Consensus in
Multi-Agent Networks”, in IEEE Transaction on Automatic Control (2023).
[R2] D. Deplano, M. Franceschelli, and A. Giua, “A nonlinear Perron–Frobenius approach for stability and consensus of
discrete-time multi-agent systems”, in Automatica (2021).
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Future directions

The theory developed in the first part paves fertile lines of research:

● Consider non differentiable maps;

● Consider time-varying maps;

● Consider nonlinear spaces;

● Consider non autonomous agents;

● Consider open networks

● And many more...

Future application perspectives:

● Distributed online optimization algorithms;

● Coordination schemes in multi-robot systems;

● Monotone games in game theory;

● ...
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