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Abstract

This thesis addresses a variety of problems that arise in the study of complex networks composed
by multiple interacting agents, usually called multi-agent systems (MASs). Each agent is modeled
as a dynamical system whose dynamics is fully described by a state-space representation.

In the first part the focus is on the application to MASs of recent results that deal with the
extensions of Perron-Frobenius theory to nonlinear maps. In the shift from the linear to the
nonlinear framework, Perron-Frobenius theory considers maps being order-preserving instead of
matrices being nonnegative. The main contribution is threefold. First of all, a convergence analysis
of the iterative behavior of two novel classes of order-preserving nonlinear maps is carried out,
thus establishing sufficient conditions which guarantee convergence toward a fixed point of the
map: nonnegative row-stochastic matrices turns out to be a special case. Secondly, these results are
applied to MASs, both in discrete and continuous-time: local properties of the agents’ dynamics
have been identified so that the global interconnected system falls into one of the above mentioned
classes, thus guaranteeing its global stability. Lastly, a sufficient condition on the connectivity of
the communication network is provided to restrict the set of equilibrium points of the system to
the consensus points, thus ensuring the agents to achieve consensus. These results do not rely on
standard tools (e.g., Lyapunov theory) and thus they constitute a novel approach to the analysis
and control of multi-agent dynamical systems.

In the second part the focus is on the design of dynamic estimation algorithms in large networks
which enable to solve specific problems. The first problem consists in breaking synchronization
in networks of diffusively coupled harmonic oscillators. The design of a local state feedback
that achieves desynchronization in connected networks with arbitrary undirected interactions is
provided. The proposed control law is obtained via a novel protocol for the distributed estimation
of the Fiedler vector of the Laplacian matrix. The second problem consists in the estimation of the
number of active agents in networks wherein agents are allowed to join or leave. The adopted
strategy consists in the distributed and dynamic estimation of the maximum among numbers
locally generated by the active agents and the subsequent inference of the number of the agents
that took part in the experiment. Two protocols are proposed and characterized to solve the
consensus problem on the time-varying max value. The third problem consists in the average
state estimation of a large network of agents where only a few agents’ states are accessible to a
centralized observer. The proposed strategy projects the dynamics of the original system into a
lower dimensional state space, which is useful when dealing with large-scale systems. Necessary
and sufficient conditions for the existence of a linear and a sliding mode observers are derived,
along with a characterization of their design and convergence properties.



Sommario

In questa tesi si affrontano vari problemi che sorgono nello studio di reti complesse in cui una
molteplicità di agenti interagisce tra loro, di solito denominati sistemi multi-agente. Ogni agente è
modellato come un sistema dinamico con rappresentazione in variabili di stato.

Nella prima parte, l’attenzione è posta sull’applicazione ai sistemi multi-agente di nuove recenti
estensioni della teoria di Perron-Frobenius alle mappe nonlineari. Nel passaggio da mappe lineari
a quelle nonlineari, la teoria di Perron-Frobenius considera mappe monotone piuttosto che matrici
non negative. Il contributo originale è triplice. Anzitutto, viene svolta un’analisi di convergenza
del comportamento iterativo di alcune classi di mappe monotone nonlineari, stabilendo così
condizioni sufficienti che garantiscono la convergenza verso un punto fisso della mappa: le matrici
non negative e stocastiche per righe e non negative ne risultano essere un caso speciale. In secondo
luogo, questi risultati sono impiegati in sistemi multi-agente, sia a tempo discreto che continuo:
si identificano le proprietà locali della dinamica di ciascun agente affinché il sistema globale
interconnesso rientri in una delle classi sopracitate, garandendone in questo modo la stabilità
globale. Infine, si ricava una condizione sufficiente sulla connettività della rete di communicazione
per limitare l’insieme dei punti di equilibrio ai punti di consenso, assicurando così che gli agenti
raggiungano il consenso. Questi risultati non si basano su metodi standard (ad esempio, la teoria
di Lyapunov) e dunque costituiscono un nuovo approccio all’analisi e al controllo di sistemi
dinamici multi-agente.

Nella seconda parte, ci si concentra sulla progettazione di algoritmi di stima dinamica in reti
estese che permettono di risolvere problemi specifici. Il primo problema consiste nel rompere
l’effetto di sincronizzazione in reti di oscillatori armonici accoppiati in modo diffusivo. Viene
sviluppata una metodologia per il progetto di una legge di retroazione locale dello stato che
consente la desincronizzazione in reti connesse con interazioni arbitrarie non dirette. L’azione
di controllo proposta è ottenuta tramite un nuovo protocollo per la stima distribuita del vettore
Fiedler della matrice Laplaciana. Il secondo problema consiste nella stima del numero di agenti
attivi in reti in cui gli agenti possono entrare e uscire. La strategia adottata consiste nella stima
distribuita e dinamica del massimo tra i numeri generati localmente dagli agenti attivi e la
conseguente inferenza del numero di agenti che hanno preso parte all’esperimento. Sono proposti
e caratterizzati due protocolli per risolvere il problema del consenso sul valore di massimo
variabile nel tempo. Il terzo problema consiste nella stima del valor medio degli stati di un’ampia
rete di agenti quando solo pochi stati degli agenti sono accessibili ad un osservatore centralizzato.
La strategia proposta proietta le dinamiche del sistema originale in uno spazio degli stati di
dimensione inferiore, rivelandosi particolarmente utile quando si ha a che fare con reti ad ampia
scala. Sono identificate le condizioni necessarie e sufficienti per l’esistenza di un osservatori
lineari e sliding-mode, insieme a una caratterizzazione del loro progetto e delle proprietà di
convergenza.
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Introduction 1
1.1 Multi-agent systems (MASs) in real life

All of us, at least once in a life time, have played board games.
My favorite are cooperative games, in which a common goal
must be achieved by the players whose exchange of information
and knowledge of the circumstances are usually constrained by
the rules. During a game, each player can only gather partial
information about the other players and takes individual decisions
in order to achieve the common goal, determining in this way
the evolution of the game as an emergent global behavior. Two
fundamental questions arise from this familiar example:

I Which is the best individual strategy to adopt?
I Is it possible to predict the evolution of the game?

Differently from game theory [182], in which each player, or agent,
makes choices trying to optimize its outcome regardless of the final
outcome of the other agents, this thesis focuses on the analysis
and control of the emergent behavior of a global interconnected
system through the design of each agent dynamics [176]. As the
number of agents increases and the structure of the communica-
tions gets complicated, the flow of information and the impact of
agents’ behavior become less amenable to analysis, prediction and
control.

It is quite intuitive that, such a scenario, where a large number of
interacting units with limited sensing and communication capa-
bility must be individually controlled with the aim of achieving a
global common goal, encompasses several real world situations.
In contrast, the problem would be much easier, albeit more un-
realistic and more expensive in terms of cost and computation
complexity, if one of the units had full information and control on
the others. From a control system perspective, the former case is
much more relevant yet challenging. In fact, the design of control
systems is experiencing a shift from centralized approaches, where
decisions are taken and spread over the network by a centralized
controller gathering the full available information, to decentral-
ized approaches, where decisions are taken by the single units
only having partial information gathered from neighboring units
without a centralized controller.
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Collective emergent behaviors were first observed in biology and
physics [124, 229]. In biology, explaining the ability of animals that
move together in a group to make collective decisions requires an
understanding of the information flow mechanisms [136, 194]. In
groups such as fish schools, sheep flocks or large insect swarms,
usually individuals can only sense the relative motion of neighbors
and are not able to distinguish one individual from another [46].
Moreover, the emergent behavior is robust to individual faults and
consequently we are increasingly acknowledging that an emergent
intelligence is more reliable than the intelligence provided by a
few leaders [123]. In statistical physics, the study of the emergent
behavior the self-propelled particles, which are described as au-
tonomous agents converting energy from the environment into
directed or persistent motion, has received a significant amount of
attention [137, 218, 228]. To understand the ubiquity of such phe-
nomena, physicists have developed a number of local interaction
rules that produce flocking or swirling behaviors, thus showing
that self-propelled particles share certain properties at the group
level, regardless of the type of particles in the swarm.

Inspired by these biological and physical phenomena, scientists
from different fields of science have developed several models to
explain these behaviors and have successfully applied them to
their case of study. In sociology [55, 86, 190], the opinion of the
people have their own nature and their evolution is influenced
by the opinion of the other people to which they have interaction,
family, friends, celebrities and so on. The diversity or agreement
of people’s opinion, which can be also interpreted as a repeated
Nash game [93][37] determining the emergent behavior of the
society, is nowadays strongly altered from the advent of modern
communication technologies and social life. In modern computing
[27, 165, 222], the computing devices are considered as active
entities capable to perceive their outer environment and acting on
it, and their individual behaviors result in a behavior accountable
as a solution of a given problem. Unlike in the past, this scenario is
today a reality due to advances in computing and communication
andagreat reduction in cost ofwireless devices. In robotic networks
[70, 110], several robots must be coordinated in order to achieve a
common task while avoiding collisions and optimizing the time
spent to achieve the task. Several other real world scenarios can be
described with the same line of thinking.

The so called Multi-Agent paradigm has been developed to study
the above described class systems. The individuals, units or parts
composing the system are called agents, and their dynamics is
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assumed to be thoroughly described by input/state maps. The
interconnections among the agents describe a network with a
specific topology. As discussed above, one of the most relevant
objectives is to infer the collective emergent behavior of the net-
work of agents from the knowledge of their individual dynamics,
their coupling dynamics with other neighboring agents and the
underlying network topology. In particular, the consensus or syn-
chronization behavior has attracted considerable interest from the
control community. The consensus or synchronization problem
consists in the design of local interaction rules between the agents
such that as global emergent behavior the network converges to a
common state, which is usually called the agreement or consensus
state. The desired consensus state is usually a function of either the
initial or current network state, differentiating between static and
dynamic consensus. A consensus algorithm, or protocol, is a local
interaction rule that specifies the information exchange between
an agent and its neighbors in the network.

After an initial period of modeling and simulation of consensus
phenomena observed in biology and physics [194, 229], the control
systems community become interested in this problem thanks to
[110]. Here, a theoretical explanation for the consensus behavior
of Vicsek model by applying graph theory and matrix theory
is provided. Soon after, a cohesive overview of the basic theory,
formulation and applications of consensus problems in networks
of first-order integrator is given in [176]. Finally, the consensus
problem of the second-order integrator MASs has been addressed
in [193], where the relevance of the communication topology for
achieving asymptotic agreement was emphasized, identifying the
necessary condition of the presence of a globally reachable node.
Nowadays, the developing of matrix and graph theory has led
the study of consensus to a new phase, where the researchers
focus on the design of consensus protocols under different sets of
assumptions on the agents’ dynamics.

The research on consensus has witnessed a huge effort to relax the
set of assumptions from various perspectives: switching network
topology and delays in the communications [162, 236], presence
of one or multiple leaders in the network [168], sampled-data and
event based transmission [96], quantized consensus [114], clustered
consensus [243], and many others. Meanwhile, an increasingly
wider class of scientific and engineering problems were addressed
including problems such as distributed consensus on specific
functions, load balancing on networks, cooperative rendezvous
in a network of mobile vehicles, synchronization of oscillators,
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1: See Chapter 3 and in par-
ticular Section 3.2

distributed clock synchronization, and many others.

1.2 Topics of the thesis and outline

In this first chapter we have introduced the reader to the multi-
agent paradigm which is useful to describe different real-world
scenarios, while in this section we provide a brief outline of the
main problems arising in the study of MASs which are addressed
in this thesis. These problems are introduced and formalized in
the next Chapter 2, along with a brief presentation of our original
results and their framing in the actual literature. The thesis consists
of two parts.

First part

The first part of the thesis focuses on the application of recent new
advances in nonlinear Perron-Frobenius theory to MASs, both in
continuous and discrete time.

In linear algebra, the Perron–Frobenius theory has immediate
consequences on the exponential growth rate of the matrix powers
which results to be controlled by the eigenvalue with the largest
absolute value. Inparticular, thePerron–Frobenius theorydescribes
the properties of the leading eigenvalue when the entries of the
matrix are nonnegative, determining in this way the limit (infinity,
finite or zero) of the power of a matrix as the exponent increases.
This theory has important applications in several fields, such as
robot coordination, power control inwireless networks, commodity
pricing models in economics, population growth models, to name
a few, including the theory of linear dynamical systems ruled by
nonnegative matrices. If “classical" Perron-Frobenius theory deals
with nonnegative matrices, nonlinear Perron-Frobenius theory
deals with positive and order-preserving maps1. In broad terms, a
map acting on a vector space is said to be positive if it leaves the
cone of positive vectors invariant and is said to be order-preserving
if it keeps ordered the images of two ordered vectors. For linear
maps, positivity and order-preservation corresponds to mappings
defined by nonnegative matrices, the object of study of Perron-
Frobenius theory. This equivalence does not hold for nonlinear
maps, thus nonlinear Perron-Frobenius theory considers maps
that are both positive and order-preserving. Since the aim is to
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exploit such a theory in nonlinear dynamical systems, positive
and order-preserving maps are considered.

However, in the shift from the linear to the nonlinear framework,
the controlled convergence behavior of the map iteration fails.
Therefore, the need to identify a more specific class of maps arises
naturally, which is the first main contribution of this part: we
identify a stricter version of order-preservation, which is termed
as type-K order-preservation2 in our previous works [58, 61], whose
iterative behavior is more constrained and it allows to avoid
periodic and divergent trajectories: nonnegative matrices turns out
to be a special case of this class of nonlinear maps. The second
main contribution is the application of this new mathematical tool
to the analysis of MASs, both in discrete and continuous-time: we
identify sufficient conditions on the local dynamics of the single
agent ensuring that the global interconnected system falls in the
class of systems under consideration. These tools do not rely on
standard methods (e.g., Lyapunov theory) and thus they represent
a novel approach to the analysis and control of dynamical systems
and MASs. Part of the results presented in this first part can be
found in [58, 61], while some results are still unpublished. The first
part of the thesis consists of three chapters:

I In Chaper 3 the fundamental definitions and results of in-
terest of nonlinear Perron-Frobenius theory are presented.
In particular, the properties of order-preservation and ho-
mogeneity of a map, object of nonlinear Perron-Frobenius
theory, are introduced along with their variations. The main
contribution of the chapter is the identification of a specific
variation of the order-preservation property, termed type-K,
which constraints the dynamics of the iterative behavior
of the map allowing to establish its convergence to a fixed
point, if one exists. Moreover, such a property is shown to
be identifiable from the sign structure of the map’s Jacobian,
paving the way for the application of this novel theory to
MASs.

I In Chapter 4 results of Chapter 3 are exploited to study
stability and, in addition, convergence to a consensus state
for two classes of discrete-time MASs where the agents
evolve with nonlinear dynamics, possibly different for each
agent. In particular, the classes of MASs of interest have
global dynamics represented by type-K order-preserving
maps possessing an extra homogeneity condition, alongside
an additional connectivity condition on the topology of the
network. These results generalize results that apply to linear
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MASs to the nonlinear case by exploiting nonlinear Perron-
Frobenius theory. Two examples of application are provided
to corroborate the theoretical analysis: the first considers the
susceptible-infected-susceptible (SIS) model and the second
is a novel protocol to solve the max-consensus problem.

I In Chapter 5 stability and, in addition, convergence to a
consensus state analysis for a class of continuous-time MASs
is carried out. The class of MASs considered in this chapter
can be regarded as the continuous-time counterpart of MASs
considered in Chapter 4. In particular, the focus is on the
class of MASs whose global dynamics is represented by
monotone and translation invariant vector fields. As a first
application we consider consensus in MASs with input
saturation, which may cause undesirable effects such as a
performance degradation and an instability. We provide
the design of a general saturating function which does not
invalidate the convergence to consensus properties of the
standard consensus protocol in networks of single-integrator;
as a special case is derived the discontinuous control protocol.
As a second application we consider the synchronization of a
general class of oscillators which includes, among the others,
Kuramoto oscillators and monotone oscillators. We provide
sufficient conditions on the coupling functions among the
oscillators, which can be directed and different for each
couple of oscillators, guaranteeing local asymptotic stability
and local instability of phase-synchronized solutions; by
means of this result, a specific design of the coupling function
is provided to establish global asymptotic stability to the
synchronized state.

Second part

The second part of the thesis focuses on different dynamic estima-
tion problems in large networks which enables to solve specific
problems, namely the desynchronization in harmonic oscillator
networks, the estimation of the size of an anonymous network and
the design of average observers.

Synchronization of flashing fireflies, coordinated oscillations of
the central pattern generator (CPG) in animal locomotion, synchro-
nization of rotor dynamics of generators in power networks are just
few examples where coupled oscillators can be found. Feedback
control theories to achieve synchronization of coupled oscillators
have received a great amount of interest from the researchers, while
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a less consideration has been given on the problem of breaking
synchronization, or, equivalently, to achieving desynchronization,
which can be useful in several context, e.g., to avoid pathological
synchronization phenomena of neural oscillations in Parkinson’s
disease or reducing the stress in networked mechanical systems.
In particular, in this thesis the desynchronization problem for
a network of diffusively coupled harmonic oscillators has been
addressed. While synchronization has been formally and easily
defined as the condition maximizing the order-parameter (magni-
tude of the centroid of the oscillators), here the dual definition of
desynchronization as the condition zeroing the order-parameter
is considered. Based on this definition, a local state feedback that
achieves desynchronization on harmonic oscillator networks with
arbitrary undirected interaction is provided; the control action
is obtained via a novel local control protocol for the distributed
estimation of the Fielder vector of the Laplacian matrix.

In distributed computation, the collaborating agents need to pre-
serve some properties and working conditions of the network, and
potentially perform opportune corrective actions. In this respect,
counting the number of active agents in a decentralized network is
a key function, and it is crucial for topological change detection or
automatic network reconfiguration. The importance of the network
size estimation problem is evident from the abundance of literature
on the topic and the several applications. The specific instance of
the size estimation problem considered in this thesis assumes the
network to be time-varying, meaning that the agent may leave or
join the network, and also assumes the anonymity of the agents,
meaning that the agents’ IDs are not share with the neighbors.
The strategy adopted in this theses takes inspiration from [225]
and it is based on statistical inference concepts whose paradigm is
the following: agents joining the network locally generate random
numbers, distributedly compute the maximum of these generated
data, finally locally compute the Maximum Likelihood estimate
of the network size exploiting its probabilistic dependencies. This
strategy requires a protocol to solve the dynamic max-consensus
problem, which is missing in the literature. Therefore, motivated
by this problem and by the lack of such a protocol in the current
literature, in this thesis two novel protocols are proposed to solve
the dynamic max-consensus problem which are then applied and
characterized for the size estimation problem in time-varying and
anonymous networks.

State estimation formonitoring large-scale systems requires tremen-
dous amounts of computational and sensing resources, which is
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impractical in most applications. However, knowledge of some
aggregated quantity of the state suffices in several applications.
Processes over physical networks such as traffic, epidemic spread
and thermal control are examples of large-scale systems. Due to the
diffusive nature of these systems, the average state is usually suffi-
cient for monitoring purposes. Therefore, in this thesis we address
the problem of designing average state observers of the network
when only a few measurements are available. The proposed strat-
egy considers a projected system which is obtained by projecting
the dynamics of the original system to a lower dimensional state
space. Such an approach is useful to deal with the complexity of
large-scale systems. Necessary and sufficient conditions for the
existence of a linear and a sliding mode observers are derived,
along with a characterization of their design and convergence
properties.

These three problems are considered in separate chapters:

I In Chapter 6 a novel continuous-time distributed control
protocol is proposed to drive the value of the state variables
of a network toward the Fielder vector, up to a scale factor,
assuming known algebraic connectivity. The protocol is unbi-
ased and robust with respect to the initial network state and
does not require initialization of state variables to particular
values. By exploiting the proposed control protocol, a local
state feedback is designed that achieves desynchronization
on arbitrary undirected connected networks of diffusively
coupled harmonic oscillators. The results of this chapter can
be found in [62].

I In Chapter 7 two novel consensus protocols for discrete-
time MASs (MAS) are proposed to solve the dynamic con-
sensus problem on the min/max value, i.e., the dynamic
min/max-consensus problem. The absolute tracking error
of the proposed distributed control protocols is theoretically
characterized and it is shown to be bounded. Moreover, by
tuning its parameters it is possible to trade-off convergence
time for steady-state error. The proposed protocol is then
applied to solve the distributed size estimation problem in
a dynamic setting where the size of the network is time-
varying during the execution of the estimation algorithm.
The results of this chapter are still unpublished and they are
available on arXiv [60], while some preliminary results were
provided in [59].

I In Chapter 8 a necessary and sufficient condition for the
existence of a average state observer for large-scale linear
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systems is derived. Two design procedures are proposed:
a linear observer and a sliding mode observer. When the
necessary and sufficient condition is not satisfied, a further
constraint design is devised to obtain an optimal asymptotic
estimate of the average state in terms of minimal estimation
error. In particular, the estimation problem is addressed by
aggregating the unmeasured states of the large-scale system
and obtaining a projected system of reduced dimension. This
approach reduces the complexity of the estimation task and
yields observers of reduced dimension.Moreover, it turns out
that the original dimension of the system also does not affect
the upper bound on the estimation error and the complexity
of the observers. Part of the results presented in this chapter
can be found in [169], while some are unpublished results.
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2.1 Multi-agent modeling of dynamical
systems

A dynamical system is an abstract concept used to denote a phys-
ical system which can be described in terms of signals evolving
in time. A dynamical system, is characterized by a mathemat-
ical model describing the laws governing the evolution of the
signals of interest; we consider state-space representations as in
Figure 2.1, which model physical systems as a set of state variables
and input/output signals related by first-order differential equations
(continuous-time) or difference equations (discrete-time). We use
the term dynamical system to refer to either continuous-time or
discrete-time dynamical systems.

Every physical system is a causal dynamical systems, i.e., the output
H(C0) at time C0 depends on past and current inputs D(C)with C ≤ C0,
but not on future input. Thus, this text studies only causal systems.
Theoretically, the inputs should be known for times back to minus
infinity, which is very inconvenient, if not impossible. The concept
of state deals with this problem: the state G(C0) of a system at
time C0 is the information at C0 that, together with the input D(C)
determines the output H(C0) for all C ≥ C0. Knowing the state at time
C0 is equivalent to know the input applied before C0 in determining
the output after C0.

Consider to be known the state G(0) ∈ - of a system at the initial
time C = 0, where - is the set of all possible states of the system.
Denoting with 5 the law describing the evolution of the state in
time, a dynamical system evolving in discrete-time reads

G(: + 1) = 5 (G(:), D(:)), : ∈ ℕ, (2.1)

where 5 : - → - is a map and the :-th iterate of map 5 is the
=-fold composition 5 = = 5 ◦ . . . ◦ 5 , and thus the system can also
be written as G(:) = 5 :(G(0)).

Similarly, a dynamical system evolving in continuous-time reads

¤G(C) = 5 (G(C), D(C)), C ∈ ℝ (2.2)
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Figure 2.2: Directed cycle
graph with 6 nodes: + =

{1, 2, 3, 4, 5, 6} and � =

{(1, 2), (2, 3), (3, 4), (5, 6),
(6, 1)}.
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Figure 2.3:Undirected star
graph with 7 nodes: + =

{1, 2, 3, 4, 5, 6, 7} and � =

{(1, 7), (7, 1), (2, 7), (7, 2),
(3, 7), (7, 3), (4, 7), (7, 4),
(5, 7), (7, 5), (6, 7), (7, 6)}

which identifies the one parameter family of maps {!(C , G) : - →
- for C ∈ ℝ}, solutions to the initial value problem. Note that for a
fixed ) ∈ ℕ, the iterates G(:) = !:(), G(0)) form a discrete-time
dynamical system for any ) ∈ ℝ.

AMAS consists of a set of dynamical systemswhose state evolution
is interdependent, and each system is usually referred to as an
agent. Consider = agents whose states are G8 with 8 = 1, . . . , = and
whose dynamics in discrete or continuous-time, respectively, is
given by

G8(: + 1) = 58(G(:), D8(:)), or ¤G8(C) = 58(G(C), D8(C)),

where D8 denotes the input of the 8-th agent. By using notation
from algebraic graph theory (see Appendix A.3), we model the
pattern of interactions among the agents with a graph.

Definition 2.1.1 A directed graph is a pair G = (+, �), where
+ ⊂ ℕ is the set of nodes and � ⊆ + ×+ is the set of edges.

A graph can be graphically represented by numbered circles
denoting the nodes 8 ∈ + and by arrows drawn from circle 8 to
the circle 9 denoting the edges (8 , 9); as an example of graphical
representation, a directed circle graph is drawn in Fig. 2.2. A
directed graph is said to be undirected if for each edge (8 , 9) ∈ �
there also exist an edge with opposite direction (9 , 8) ∈ �. In
Fig. 2.3 is shown an undirected star graph, where the edges are
depicted as lines instead of arrows due their undirected nature. If
not mentioned, a graph refers to a directed graph.

The nodes of the graph 8 ∈ {1, . . . , =} = + represent the agents
and the edges (8 , 9) ∈ + ×+ = � represent the existing interaction
among agents 8 and 9. In a natural way the set of neighbors
is defined as N8 = { 9 : (8 , 9) ∈ �}, which contains the agents
interacting with agent 8. Therefore, the dynamics 58(·) of each
agent can be decomposed into its own dynamics 68(·), if any, and a
local interaction protocol with neighboring agents ℎ8(·), as follows

58(G, D) = 68(G8) + ℎ8(D8 , G8 , G 9 : 9 ∈ N8). (2.3)

Such distinction is not always made explicit and sometimes 58(·)
directly denotes the local interaction rule of the 8-th agent. Clearly,
denoting with G = [G1, . . . , G2] ∈ -= the whole state of the MAS
and with 5 = [ 51, . . . , 5=] : -= → -= , the MAS can be written as
a dynamical system as in eq. (2.1) or eq. (2.2).
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2.2 The consensus problem

An autonomous1 MAS is completely defined by the agents’ dy-
namics 68(·), their local interaction protocol ℎ8(·) and the network
topology G. In the remainder of this section we consider a vector
state space - ⊆ ℝ.

Problem 2.2.1 Consider an autonomous MAS defined by the
network topology G = (+, �) with agents’ dynamics as in eq.
(2.3). The consensus problem consists in the design of a set of
local interaction protocols ℎ8(·) such that each agent converge to
the same state, i.e.,

lim
C→∞

����G8(C) − G 9(C)���� = 0, ∀8 , 9 ∈ +. (2.4)

The state reached by the agent goes by the name of agreement or
agreement state, where indeed the value of each agent’s state is the
same. Sometimes, the consensus state is required to be a specific
function of the initial network state, such as the average value, the
median value, the min/max value, the variance, and many others.
In the next subsectionswe review themost popular linear protocols
to achieve consensus both in continuous and discrete-time, then
we briefly comment some of our related main results, which are
their nonlinear counterpart. These results are discussed at length
in Chapters 4-5 and relies on the theory developed in Chapter 3.

Consensus in discrete-time

Let G be a graph that describes the topology of the network
of agents and assume that each agent is a single discrete-time
integrator with dynamics

G8(: + 1) = G(:) + ℎ8(G8(:), G 9(:) : 9 ∈ N8), (2.5)

where G8 ∈ ℝ. One of the most popular linear local interaction
protocol solving the consensus problem is provided in [175] and
reads as

ℎ8(·) = �
∑
9∈N8

(
G 9(:) − G8(:)

)
, (2.6)

The peculiarity of this protocol is its dependence from the parame-
ter � ∈ ℝ and its relation to the Laplacianmatrix ! of graph G; in
fact the global multi-agent system dynamics is linear and can be
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written in compact form as

G(: + 1) = (� − �!)︸   ︷︷   ︸
%

G(:). (2.7)

Definition 2.2.1 Given a directed graph G= (�,+), its |+ | × |+ |
Laplacian matrix ! with elements ℓ8 9 , 8 , 9 ∈ + , is defined by

ℓ8 9 =


−1 if (8 , 9) ∈ �
|N8 | if 8 = 9

0 otherwise
.

The convergence properties of system (2.5)-(2.6) depends on the
parameter � and the topological structure of G(see Theorem 5.1 in
[32]); in particular, the system reaches consensus if

1. The parameter � satisfies � < max
8∈+
|N8 |−1;

2. The graph Gcontains a globally reachable node.

These two conditions can be derived by the several interesting
properties of the Laplacian matrix. First of all, denoting with 1 and
0 the vectors of ones and zeros, respectively, it holds that !1 = 0.
Moreover, the Laplacian matrix has always a zero eigenvalue,
while all others have strictly positive real part which is less than
2�max8∈+ |N8 |. It is straightforward to notice that by construction
matrices % and ! share the same set of eigenvectors and that
the eigenvalues �8 of the matrix % are linked to those �8 of ! by
the following �8 = 1 − ��8 . Thus, system (2.7) have a structural
eigenvalue �1 = 1 associated to the eigenvector 1. Moreover, if
condition 1. is satisfied, then all eigenvalues have real part strictly
less than 1 and if condition 2. is satisfied, then the eigenvalue
�1 = 1 is unique and thus the system is marginally stable and
all trajectories converges to the space spanned by the eigenvector
1 associated to the simple unitary eigenvalue, thus proving the
achievement of a consensus state among the agents.

Many variations of protocol in eq. (2.6) have been proposed, not
necessarily in a chronological order, in several applications, such as
formation control inmulti-vehicle systems [70, 110], themodeling of
the emergent flocking behavior [228, 229], optimization algorithms
[165, 221], and many others.
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Now, consider its natural nonlinear generalization,

ℎ8(·) = �
∑
9∈N8

ℎ
(
G 9(:) − G8(:)

)
, (2.8)

where the function ℎ is a nonlinear function of the agents’ state
differences. As before, the convergence properties of system (2.5)-
(2.8) depends on the parameter �, the coupling function ℎ(·) and
the topological structure of G; in particular, the system reaches
consensus if

1. The parameter � satisfies � < max
8∈+

[
|N8 |

%

%G8
ℎ(·)

]−1

;

2. The graph Gcontains a globally reachable node;
3. The function ℎ(·) satisfies ℎ(0) = 0 and ℎ′(·) ≥ 0;

This result is an original contribution of this thesis and it is a special
case of the results provided in Chapter 4. It is worth mentioning
that this results does not fall in the general convex analysis of
Moreau [160], even if most of the results presented in the literature
do. It is clear that if the function ℎ(·) is taken as the identity map
ℎ(G) = G, then protocol in eq. (2.8) reduces to the one in eq. (2.6).
Due to condition 3., this protocol makes the global dynamical
system order-preserving and homogeneous [4, 5, 91]. We refer the
reader to Section 4.1 for a detailed study of the related literature.

Consensus in continuous-time

Let Gbe a graph that describes the topology of the network of
agents and assume that each agent is a single continuous-time
integrator with dynamics

¤G8(C) = ℎ8(G8(C), G 9(C) : 9 ∈ N8), (2.9)

where G8 ∈ ℝ. One of the most popular linear local interaction
protocol solving the consensus problem reads as

ℎ8(·) =
∑
9∈N8

(
G 9(C) − G8(C)

)
, (2.10)

The global system dynamics is thus ruled by the Laplacian matrix
! encoding the network topology G, in fact it can be compactly
represented by

¤G = −!G
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The convergence of the system (2.9)-(2.10) requires that the topolog-
ical structure of Gcontains a globally reachable node, see Theorem
7.4 in [32].

Now, consider its natural nonlinear generalization,

ℎ8(·) =
∑
9∈N8

ℎ
(
G 9(C) − G8(C)

)
, (2.11)

where the function ℎ is a nonlinear function of the agents’ state dif-
ferences. The convergence properties of system (2.9)-(2.11) depends
on the coupling function ℎ(·) and the topological structure of G;
in particular, while the graph is still required to contain a globally
reachable node, the function ℎ(·)must satisfy the following

ℎ(0) = 0, ℎ′(·) ≥ 0 (2.12)

This result is an original contribution of this thesis and it is a
special case of the results provided in Chapter 5. A similar result
is given in [253], where in addition the vector field of the global
system is required to met an extra strict subtangentiality condition.
It is clear that if the function ℎ(·) is taken as the identity map
ℎ(G) = G, then protocol in eq. (2.11) reduces to the one in eq.
(2.10). Due to condition in eq. (2.12), this protocol makes the global
dynamical system monotone and translation invariant [14, 108,
210]. We refer the reader to Section 5.1 for a detailed study of the
related literature.

2.3 The dynamic consensus problem

The asymptotic consensus problem presented in the previous sec-
tion can be recast as a problem of estimating some functions of
static agents’ inputs by requiring that all the agents initialize their
state to their own inputs. However, the nature of decentralized
control requires coordination among agents in a dynamic envi-
ronment, making consensus protocols on static inputs insufficient
and the need of consensus protocols tracking time-varying inputs
necessary. Moreover, an asymptotic convergence to a common
value is sometimes unfeasible, and the problem can be relaxed to
an approximate consensus: the agents are required to converge
in finite time to the desired function up to an bound. In the re-
minder of this section we only consider discrete-time MASs with
agents evolving in ℝ, and the network graph is assumed to be
undirected.
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Problem 2.3.1 Consider a non-autonomous MAS defined by the
network topology G = (+, �) with agents’ dynamics as in eq.
(2.3). The dynamic consensus problem consists in the design of
a local interaction protocol ℎ8(·) such that each agent converges
to a desired function >(D(:)) of the time-varying inputs up to a
bound � ∈ ℝ, i.e., there exists a time ) such that

||G8(:) − >(D(:))|| ≤ �, : ≥ ), ∀8 , 9 ∈ +. (2.13)

Differently from the static asymptotic consensus, in the finite-
time dynamic approximate consensus the agents are not anymore
required to achieve the exact same value, but to be close enough
to the desired function of the time-varying inputs.

Whereas there exist several other formulations of the dynamic
consensusproblemanddifferent objective functions are considered,
the literature mainly focuses on the estimation of the average
among the inputs [119]. The first strategy one could think is to
employ a static average consensus protocol, e.g., the one in eq.
(2.9)-(2.6), re-initializing the network’s state to the current inputs’
values at each sampling time. Clearly, this strategy is not optimal
since at each sampling time it requires a centralized re-initialization
step and the memory of the past actions is lost, severely affecting
the tracking response. By taking a look from a frequency domain
perspective, one deduces that, instead of the entering the reference
signals as initial conditions, what is needed is to continuously
inject the signals as inputs into the dynamical system, as follows

G8(: + 1) = G(:) + �
∑
8∈N8

(
G 9(:) − G8(:)

)
+ ΔD(:)

G8(0) = D8(0)
,

where ΔD(:) = D(: + 1) −D(:). This enables the system to respond
to signals’ changeswithout any need for re-initialization [254]. This
algorithm has been derived from the original protocol proposed in
continuous-time in the pioneeringwork [213], where the derivative
¤D of the inputs were considered instead of the difference ΔD(:).
Both algorithms require a specific initialization of the network
and cannot handle noise in the communication or link failures.
To overcome these limitations several approaches have been been
proposed both in continuous-time [92, 117] and in discrete-time
[159, 224].

On the other hand, the estimation of average value is not the
only attractive goal. In fact, there is a certain number of static
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protocols for estimating the median value [81, 242] which have
been extended to the dynamic case [51, 227], and an even more
peculiar attention has been paid to the estimation of the max value
both in continuous [45] and discrete-time [217], which have not
been extended to the dynamic case, unfortunately. We refer the
reader to Section 7.1 for a detailed study of the related literature.

Dynamic consensus on the max value

The most popular yet simple discrete-time protocol to solve the
estimation of the max value of the initial state of the is the one
presented in [217]. If applied to the estimation of the average of
static inputs, the protocol requires that the agents first initialize
their state to the value of the inputs and then update their state at
each iteration by taking the maximum among the state values of
the neighbors and their own state. The protocol reads as

G8(: + 1) = max
9∈N8∪{8}

{G 9(:)}

G8(0) = D8(0)
.

A dynamical version of this protocol which enables the agents to
track the maximum of time-verying inputs and it is robust to a
specific initialization of the network is the following

G8(: + 1) = max
9∈N8∪{8}

{G 9(:) − 
, D8(:)},

where 
 > 0 is a design parameter. As in the dynamic average
protocol, one needs to continuously inject the inputs into the agents
dynamics. This protocol is one of the two novel protocols proposed
in this thesis to solve the dynamic consensus problem on the max
value and it is fully characterized in Chapter 7.

2.4 The (de)synchronization problem

Consensus and synchronization problems in networks of dynami-
cal agents are typically solved with diffusive couplings, i.e., dis-
tributed control lawsbasedon thedifferences of neighboring agents’
states. In particular, synchronization in ensembles of coupled os-
cillators has attracted a great interest in the scientific community.
Well-known examples are the classical consensus protocol in (2.6)
presented in [175], its extension to harmonic oscillators [192] and
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Note that the discussion
here is simplified to the
case of identical oscillators,
i.e., identical frequencies
$8 = $ for all 8 = 1, . . . , =.

its nonlinear counterpart in Kuramoto oscillator networks [128].

An oscillator exhibits a periodic motion that repeats itself in a
regular cycle, such as a cosine wave with frequency $ ∈ ℝ,

H8(C) = "8 cos($C + !8),

which are characterized by their amplitude "8 and their phase
�8(C) = $C + !8 .

Phase oscillator model

If the magnitude of all oscillators is the same, without loss of
generality it can be assumed to be unitary and the only state
variable to be modeled is the phase �8 = $C + !8 , whose isolated
dynamics is ¤�8 = $. The interaction topology among the oscillators
is modeled by a graph G and the coupling is considered to be
diffusive

¤�8(C) = $ +
∑
8∈N8

ℎ8 9(�9(C) − �8(C)). (2.14)

where ℎ8 9 : S → ℝ are 2�-periodic coupling function. A syn-
chronization measure is the magnitude ' of the so-called order
parameter introduced by [128] as

'4 9) =
=∑
8=1

4 9!8 .

which constitutes the centroid of all oscillators represented as
points on the unit circle. Maximal synchronization happens if
' = 1, i.e., when all oscillators have the same phase; minimal
synchronization, or equivalently, maximal desynchronization hap-
pens if ' = 0, i.e., when all oscillators are spaced equally on the
unit circle.

Problem 2.4.1 Consider a network of = identical oscillators
with dynamics as in (2.14) coupled according to graph G. The
phase synchronization problem consists in the design of a local
interaction protocol ℎ(·) such that for C →∞ the oscillators reach
a configuration for which

' = 1⇔
�����8(C) − �9(C)���� = 0, (2.15)

i.e., the phases reaches a consensus state or, equivalently, the
centroid is on the unitary circle of the Complex Plane.



2 State of the art, problems, and results 19

[111] Jadbabaie et al.
(2004), ‘On the stability of
the Kuramoto model of
coupled nonlinear oscilla-
tors’.
[160] Moreau (2005),
‘Stability of multiagent sys-
tems with time-dependent
communication links’.
[66] Dörfler and Bullo
(2014), ‘Synchronization in
complex networks of phase
oscillators: A survey’.

[146] Mallada et al. (2015),
‘Distributed synchroniza-
tion of heterogeneous os-
cillators on networks with
arbitrary topology’.

[192] Ren (2008), ‘Syn-
chronization of coupled
harmonic oscillators with
local interaction’.

The often encountered and most thoroughly studied case is that of
anti-symmetric coupling without higher-order harmonics, that is,
the sinusoidal coupling ℎ8 9(·) = B8=(·). In particolar, the seminal
work of Kuramoto [128] considered the coupled oscillator dynam-
ics in eq. (2.14) with a complete interaction graph and uniform
weights,

¤�8(C) = $ +  
=

=∑
8=1

sin(�9(C) − �8(C)),

showing by a potential landscape analysis that the network achieve
phase synchronization for any value of the coupling gain  . The
interest of the control community in oscillator networks was
initially triggered by [111, 160], who analyzed networks of identical
oscillators as nonlinear extensions of the consensus protocol in
eq. (2.6). We refer the reader to [66] for a comprehensive review
of the state-of-the art results on Kuramoto oscillators with several
generalizations, such as heterogeneous natural frequencies, sparse
network topologies and infinite oscillator populations.

Most of the results presented in [66] can be extended to more
general anti-symmetric and 2�-periodic coupling functions as long
as the coupling is diffusive and bidirectional. However, in some
applications, the coupling topology is inherently directed [148],
for which there are only a few theoretical investigations. This
consideration motivates the analysis carried out in Chapter 5 for
the synchronization stability of oscillator networks with directed
coupling and heterogeneous functions ℎ8 9(·) for any pair (8 , 9)
of oscillators, satisfying ℎ(0) = 0 and the following piecewise
monotonicity condition previously considered also in [146],

3

3�
ℎ(�) =

{
> 0 � ∈ (−
, 
)
< 0 � ∈ (−�,−
) ∪ (
,�)

, 
 ∈ [0,�].

In Section 5.4 we show that if a phase synchronized exists, it is
locally exponentially stable and that always exists a design of the
parameter 
 ensuring global phase synchronization.

Harmonic oscillator model

If the magnitude "8 of the oscillators is not necessarily same,
the system to be modeled is of second order. A model that have
recently attracted increasing attention is the one of harmonic
oscillators [192]. In fact, due to their theoretical and practical sig-
nificance, networks of harmonic oscillators have been applied to
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address several problems electrical networks [223], in quantum
electronics-mechanics-optics [28, 155, 247], resonance phenom-
ena[208], motion coordination [21, 141] and acoustic vibrations
[252].

The dynamics of harmonic oscillators with state G8 ∈ ℝ2 reads as

¤G8(C) =
[
0 −$
$ 0

]
G8(C),+

[
0
1

]
· ℎ8(H8(C), H9(C) : 9 ∈ N8)

H8(C) =
[
0 1

]
G8(C)

(2.16)

where the interaction topology among the oscillators is modeled
by a graph G. The synchronization measure proposed in Chapter 6
is the magnitude ' of the generalized order parameter

'4 9) =
1∑=

8=1 "8

=∑
8=1

"84
9!8 ,

which constitutes the centroid of all oscillators represented as
points on different circles of radius"8 . Maximal synchronization
happens if ' =

∑=
8=1 "8 , i.e., when all oscillators have the same

phase; minimal synchronization, or equivalently, maximal desyn-
chronization happens if ' = 0, i.e., when all oscillators spaced on
the complex plane such that their centroid is at the origin. This
definition of (de)synchronization takes clear inspiration from the
one proposed by Kuramoto.

Desynchronization has significance in several fields: treatment of
neurological diseases (e.g., epilepsy and Parkinson) is addressed
by means of desynchronization in neuronal networks [2, 84, 116,
156, 158, 180, 187, 189]; desynchronization is also a useful primitive
for periodic resource sharing and applies to sensor network appli-
cations [44, 54, 153, 184]; finally, another important application is
the motion coordination [15, 34, 90, 135].

Problem 2.4.2 Consider a network of = identical oscillators
with dynamics as in (2.16) coupled according to graph G. The
desynchronization problem consists in the design of a local
interaction protocol ℎ(·) such that for C → ∞ the oscillators
reach a configuration for which

' = 0⇔ 1ᵀH(C) = 0, (2.17)

i.e., the collective dynamics is non-null with zero mean or,
equivalently, the centroid is at the origin of the Complex Plane.
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Currently, there are not studies on the desynchronization problem
in networks of harmonic oscillators, even with different formu-
lations. A first solution to this problem in the case where the
oscillators are subject to a diffusive coupling is provided in Chap-
ter 6. The proposed strategy employ the strategy to use the mean
field of the oscillator network to suppress the synchronization
behavior; this strategy has been employed with other oscillator
models, e.g., in [2, 84].

2.5 The observation problem

Consider a network with a very large number of agents, leading to
a so-called large-scale dynamical network system, and consider
the case in which the agents have not computational capabilities
and/or the agents are not allowed or able to share their actual state.
Themonitoring of such a large-scale systemwould require to equip
each agent with a computational unit and the permission to access
the agents’ state and its neighbors by the unit. This solution may
be often unfeasible due to a limited number of computational unit
to be deployed in the network, for instance for cost reasons, and
due to a restricted access to the agents’ states. This can make the
system unobservable in the sense that real-time estimation of the
whole network is unfeasible. It is reasonable, therefore, to monitor
the network system by dynamically estimating some aggregated
state profiles, i.e., some functional of the network’s state.

The observation problem is thus the one of reconstructing or
estimating the state or a linear combination of the states of the
system using the input and output measurements [48], which can
be traced back to the seminal works of Luenberger [144]. The global
linear system can be compactly represented by

¤G(C) = �G(C) + �D(C)
H(C) = �G(C)
I(C) = !G(C)

, (2.18)

where G, H, D, are the state, output and input of the system,
respectively, and I is the quantity to be estimated. The aim is the
construction of an observer of the form

¤F(C) = 5 (F(C), H(C), D(C))
Î(C) = 6(F(C), H(C))

, (2.19)

where Î constitutes an estimate of the desired quantity I.
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Problem 2.5.1 Consider a linear network as in eq. (2.18). The
observation problem consists in the design of an observer as in
eq. 2.19 such that

lim
C→∞
|| Î(C) − I(C)|| = 0.

In particular, the average estimation in linear time-invariant sys-
tems has recently attracted some attention [197], which is mean-
ingful in many applications such as urban traffic networks [42],
building thermal systems [56], epidemic spread over networks
[152], and power grids [179].

The specific instance of the problem considered in Chapter 8 is the
estimation of the average unmeasured state of the system when a
few nodes ? � = of the network are measured, i.e.,

� =
[
0 �?

]
, ! =

1
=

[
1
ᵀ
=−? 0

ᵀ
?

]
.

Necessary and sufficient conditions for the existence of the observer
are derived, which do not requires the computation of ranks of a
concatenation of system matrices as in [71, 195], along with two
different designs.
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Stability of nonlinear
dynamical systems 3

In this chapter autonomous discrete-time dynamical systems evolv-
ing in the real vector space ℝ= are considered,

G(: + 1) = 5 (G(:)) or equivalently G(:) = 5 :(G(0)), (3.1)

where G(0) ∈ ℝ= is the initial condition of the system.

When the map 5 (·) is a linear operator, i.e., 5 (G) = �G where
� ∈ ℝ=×= is a square matrix, the classical Perron-Frobenius theory
is a cornerstone in the convergence analysis of the asymptotic
behavior of the system. This theory is widely established and it is
briefly recalled in Section 3.1. In the past few decades a number
of nonlinear extensions of Perron-Frobenius theory have been
obtained, providing an extensive analysis of various classes of
nonlinear maps and give information about their iterative behavior
and periodic trajectories. It is natural to think how the results
for linear dynamical systems would translate into the nonlinear
framework.

In Section 3.1 a self-contained presentation of some basic results of
classical Perron-Frobenius theory for nonnegativematrices is given
along with their application to the convergence analysis of dynam-
ical systems when the matrix is also stochastic. In Sections 3.2-3.3
the class of nonlinear maps which are the counterpart of nonnega-
tive and stochastic matrices is introduced; these maps are shown to
possess the property of non-expansivess in Section 3.4. The main
result of this chapter is the convergence analysis for these classes
of maps and are given in Section 3.5, while its application to the
convergence of nonlinear MASs in discrete and continuous-time is
provided and discussed at length in Chapters 4-5, respectively.

3.1 Background on linear PF theory

The asymptotic behavior of a discrete-time dynamical system (3.1)
with linear dynamics is determined by asymptotic limit of the
powers of its state transition matrix.
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�(�) denotes the set of
eigenvalues of �, see Ap-
pendix A.2

Definition 3.1.1 A matrix � ∈ ℝ=×= is:

(i) divergent if lim
:→+∞

�: = [∞];
(ii) periodic if lim

:→+∞
�: does not exists;

(iii) semi-convergent if lim
:→+∞

�: exists;

(iv) convergent if lim
:→+∞

�: = 0=×=

The next theorem recalls necessary and sufficient convergent
conditions of any square matrix.

Theorem 3.1.1 A matrix � ∈ ℝ=×= is:

(i) semi-convergent if and only if
�(�) denotes the spectral
radius of the matrix �, see
Appendix A.2

�(�) ≤ 1, there exists no
eigenvalue of unitary norm except possibly � = 1 and if � = 1
is an eigenvalue then it is semisimple.

(ii) convergent if and only if �(�) < 1.

Classical Perron-Frobenius theory is instrumental in the conver-
gence analysis of powers of nonnegative matrices because it char-
acterizes their spectral properties. The square matrix � = {08 9} ∈
ℝ=×= is

(i) nonnegative if 08 9 ≥ 0 for all 8 , 9 ∈ {1, . . . , =};
(ii) positive if 08 9 > 0 for all 8 , 9 ∈ {1, . . . , =};

Similar definitions apply to vectors inℝ= . However, requiring that a
matrix is nonnegative is not enough to guarantee its convergence, as
shown in the following examples, coherently with Theorem 3.1.1:

I Matrix �1 =

[
1 1
0 1

]
with �(�) = {1, 1} is divergent.

I Matrix �2 =

[
1 1
0 0

]
with �(�) = {0, 1} is semi-convergent.

I Matrix �3 =

[
0 1
0 0

]
with �(�) = {0, 0} is convergent.

I Matrix �4 =

[
0 1
1 0

]
with �(�) = {1,−1} is periodic.

I Matrix�5 =

[ 1
2

1
2

1 0

]
with �(�) = {1,−1/2} is semi-convergent.

It is therefore necessary to identify additional properties in order
to differentiate among nonnegative matrices those who are semi-
convergent. A square matrix � = {08 9} ∈ ℝ=×= with = ≥ 2 is

(i) irreducible if
∑=−1
:=0 �

: is positive;
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nonnegative
(A ≥ 0)

irreducible
(
∑n−1

k=0 A
k > 0)

primitive
(∃k ∈ Z|Ak > 0)

positive
(A > 0)

Figure 3.1: The set of non-
negative square matrices
and its subsets of irre-
ducible, primitive and pos-
itive matrices.
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(ii) primitive if there exists : ∈ ℕ such that �: is positive.

Figure 3.1 shows the relations among these properties, highlighting
that positivity is the strongest and nonnegativity is the weakest.
Note that the inclusions in the diagram are strict, as the following
counter examples show:

I �3 is nonnegative but not irreducible;
I �4 is irreducible but not primitive;
I �5 is primitive but not positive.

The following result are due to Perron and Frobenius [87–89,
185].

Theorem 3.1.2 Let � ∈ ℝ=×= with = ≥ 2. If � is nonnegative, then

(i) there exists a real eigenvalue� ≥ |�| ≥ 0 for all other eigenvalues
�,

If additionally � is irreducible, then

(ii) the eigenvalue � is strictly positive and simple,

If additionally � is primitive, then

(iii) the eigenvalue � satisfies � > |�| for all other eigenvalues �.

Given a primitive matrix � with dominant eigenvalue � = 1, the
Perron-Frobenius Theorem 3.1.2 has immediate consequences for
the behavior of �: , guaranteeing its semi-convergence by exploit-
ing Theorem 3.1.1. Therefore, the characterization of nonnegative
matrices with a unitary dominant eigenvalue has led to the iden-
tification of the class of row-stochastic matrices. A square matrix
� = {08 9} ∈ ℝ=×= is said to be row-stochastic if it is nonnegative
and if �1 = 1, or, equivalently, if

∑=
9=1 08 9 = 1 for all 8 ∈ {1, . . . , =}.

For row-stochastic matrices the next lemma holds.

Lemma 3.1.3 For a row-stochastic matrix �:

I � = 1 is an eigenvalue;
I The spectral radius is unitary, i.e, �(�) = 1.

By combining the notion of row-stochasticity and the Perron-
Frobenius Theorem 3.1.2, one gets the next theorem that is widely
used in the field of network systems.

Theorem 3.1.4 For a primitive row-stochastic matrix �,
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(i) �(�) is a simple eigenvalue strictly larger than the magnitude of
all other eigenvalues, hence � is semi-convergent;

(ii) the limiting matrix is �∞ = 1Fᵀ, where F is the left dominant
eigenvector of � with eigenvalue 1 such that 1ᵀF = 1;

(iii) the associated dynamical system in (3.1) is stable and converges
to an equilibrium

lim
:→∞

G(:) = (FᵀG(0))1.

In this case the system is said to achieve consensus and FᵀG(0)
is the consensus value.

In the next sections, the above theorem is generalized to nonlinear
maps which possess the properties of order-preservation (instead
of nonnegativity) and homogeneity (instead of row-stochasticity).
These properties are introduced in Sections 3.2-3.3, respectively.
In Section 3.5 a convergence analysis of their iterative behavior
is provided, generalizing point (8) of Theorem 3.1.4. Finally, in
Chapters 4-5 local sufficient conditions to establish convergence to
a consensus state of MASs ruled by the considered class of maps
are given, thus generalizing (888) of Theorem 3.1.4.

3.2 Order-preservation of maps

Nonnegative matrices leave the cone of nonnegative vectors in ℝ=

invariant, i.e., each nonnegative vector is mapped into another
nonnegative vector. This is a crucial property and part of the
Perron-Frobenius theory can be generalized to maps, either linear
or nonlinear, that leave a cone in a vector space invariant. This
important observation was made by Krein and Rutman in their
pioneering work [126], in which they studied linear operators
that leave a cone in a possibly infinite-dimensional normed space
invariant.

Instead, here the focus is on nonlinear maps acting on a real finite-
dimensional vector space, leaving invariant the standard positive
cone

ℝ=
+ = {(G1, . . . , G=) ∈ ℝ= : G8 ≥ 0,∀8 ∈ {1, . . . , =}}. (3.2)

Hence, a map leaving the standard positive cone invariant is said
to be positive, according to the following definition.
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Definition 3.2.1 A map 5 : ℝ= → ℝ= is said to be positive if
5 (ℝ=

+) ⊆ ℝ=
+, i.e., if map 5 (·) maps nonnegative vectors into nonnega-

tive vectors.

The standardpositive coneℝ=
+ is a partially ordered setwith respect

to the natural order relation≤. In otherwords, the standardpositive
cone ℝ=

+ induces a partial ordering ≤ on ℝ= by

H ≤ I or I ≥ H ⇔ I − H ∈ ℝ=
+,

H � I or I 
 H ⇔ I − H ∈ ℝ=
+ \ {0},

H < I or I > H ⇔ I − H ∈ int(ℝ=
+),

and so, in the sequel, the ordered real vector space (ℝ= , ≤) is
considered. The partial ordering ≤ yields an equivalence relation
∼ on ℝ=

≥0, i.e., G is equivalent to H (G ∼ H) if there exist 
, � ≥ 0
such that G ≤ 
H and H ≤ �G. The equivalence classes are called
parts of the cone of nonnegative real vectors and the set of all parts
is denoted by P. It can be shown (see [4]) that the cone ℝ=

≥0 has
exactly 2= parts, which are given by

%� = {G ∈ ℝ=
≥0 |G8 > 0, ∀8 ∈ � and G8 = 0 otherwise} ,

with � ⊆ {1, . . . , =}. We define a partial ordering on the set of
parts P given by %�1 � %�2 if �1 ⊆ �2.

If the map 5 (·) is a linear map, the cone invariance condition
5 (ℝ=

+) ⊆ ℝ=
+ is equivalent to the property of order-preservation.

Roughly speaking, an order-preserving map keeps ordered the
image of two ordered vectors.

Definition 3.2.2 A map 5 : ℝ= → ℝ= is said to be

I order-preserving if ∀G, H ∈ ℝ= it holds

G ≤ H ⇒ 5 (G) ≤ 5 (H).

I strictly order-preserving if ∀G, H ∈ ℝ= it holds

G � H ⇒ 5 (G) � 5 (H).

I strongly order-preserving if ∀G, H ∈ ℝ= it holds

G � H ⇒ 5 (G) < 5 (H).

For linear maps, order-preservation and positivity are equivalent
properties and correspond to mappings defined by nonnegative
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order-preservation
x ≤ y ⇒ f(x) ≤ f(y)

strict
x � y ⇒ f(x) � f(y)

type-K
xi = yi ⇒ fi(x) ≤ fi(y)
xi < yi ⇒ fi(x) < fi(y)

positive
x � y ⇒ f(x) < f(y)

Figure 3.2: The set of
order-preserving maps
and its subsets of strict,
type-K and strong
order-preserving maps.

matrices, the object of study of classical Perron-Frobenius theory.
This equivalence does not hold for nonlinear maps, thus nonlinear
Perron-Frobenius theory considers maps that are both positive
and order-preserving.

In addition to these broadly known notions of order-preservation,
here a less acknowledged notion that is in between strict and
strong order-preservation is introduced and denoted as type-K
order-preservation. The term type-K is likely related to Kamke, as
it will be clear in the following. It plays a pivotal role in the
characterization of the class of nonlinear systems of interest and
which will be discussed at length in Chapters 4-5.

Definition 3.2.3 A map 5 : ℝ= → ℝ= is said to be type-K order-
preserving if ∀G, H ∈ ℝ= and G � H it holds

(8) G8 = H8 ⇒ 58(G) ≤ 58(H) ,
(88) G8 < H8 ⇒ 58(G) < 58(H) ,

for all 8 = 1, . . . , =, where 58 is the 8-th component of 5 .

Figure 3.1 shows the relation among these properties, highlighting
that positivity is the strongest and nonnegativity is the weakest.
Note that the inclusions in the diagram are strict, in fact, given
G, H ∈ ℝ and 5 : ℝ2 → ℝ2, as the following counter examples
show:

I 5 (G, H) = [1, 1]ᵀ is order-preserving but not strictly order-
preserving;

I 5 (G, H) = [H, G]ᵀ is strictly order-preserving but not type-K;
I 5 (G, H) = [

√
G + H, H]ᵀ is type-K order-preserving but not

strongly order-preserving.

As it will be shown in Section 3.5, positive and type-K order-
preservation plays a pivotal role in the characterization of the class
of maps of interest.

To decide whether a map 5 (·) is type-K order-preserving one can
use, besides the definition, the sign structure of its Jacobian matrix.
This provides a practical tool to establish order-preservation of a
given function.

Proposition 3.2.1 Themap 5 : ℝ= → ℝ= is type-K order-preserving
if and only if its Jacobian matrix is Metzler with strictly positive
diagonal elements, i.e.,

% 58/%G8 > 0 and % 58/%G 9 ≥ 0 for 8 ≠ 9 . (3.3)
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Figure 3.5: Type-K order-
preserving map

Proof. Let G ∈ ℝ= and, without lack of generality, H = G + �4 9
where � > 0 and 4 9 denotes a canonical vector with all zero values
but the 9-th which is 1, thus G � H. If (5.3) holds, then

a) If 8 ≠ 9 then H8 = G8 + �0 = G8 and

% 58(G)
%G 9

= lim
�→0

58(G + �4 9) − 58(G)
�

.

Condition (8) of Definition 3.2.3 holds if and only if 58(G) ≤
58(H) = 58(G + �4 9). This is equivalent to a Jacobian matrix
being Metzler.

b) If 8 = 9 then H8 = G8 + �1 > G8 and

% 58(G)
%G8

= lim
�→0

58(G + �48) − 58(G)
�

.

Condition (88) of Definition 3.2.3 holds if and only if 58(G) <
58(H) = 58(G + �4 9). This is equivalent to a Jacobian matrix
with strictly positive diagonal

The necessity and sufficiency of the above statements completes
the proof.

To conclude this section, an intuitive graphical representation
of type-K order-preservation is given for maps acting on ℝ2,
highlighting in this way what is the main difference with the other
notions, see Figures 3.3-3.4-3.5. Consider the real vector space ℝ2

and two ordered vectors G = [0, 1]ᵀ and H = [0, 3]ᵀ such that
G � H. The mapping 5 (G) identifies a cone which is highlighted in
red in the figures; the bold lines represents the faces of the cone
and the red faded square represents its interior. As it is shown in
the figures:

I Order-preservation allows to map vector H either into the
interior of the cone or into the faces;

I Strong order-preservation allows to map vector H only into
the interior of the cone;

I Type-K order-preservation allows to map vector H into the
interior of the cone but also in one of the two faces of the
cone. In fact, points G, H do not lie in the vertical face of
the cone with origin in G, thus type-K order-preservation
prevents their mappings 5 (G), 5 (H) to lie into this face.

Consider as a simple example the map 5 (G, H) = [H, G]ᵀ, which is
order-preserving but not type-K order-preserving. The sequence
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of points generated by the iteration of the map starting at points
G = [0 0]ᵀ and H = [0, 1]ᵀ is shown next,[

0
0

]
→

[
0
0

]
→ · · · →

[
0
0

]
→ · · ·[

0
1

]
→

[
1
0

]
→ · · · →

[
0
1

]
→

[
1
0

]
→ · · ·

It can be noticed that the point G is mapped into itself by 5 (G), and
thus it constitutes a fixed point of themap; on the contrary, the point
H is mapped into itself by the map 5 2(G), and thus it constitutes a
periodic point of period equals to 2 of the map 5 (G). Such periodic
behaviors of the iteration of a map can be avoided by the stricter
type-K order-preservation assumption. In fact, as better explained
in Section 3.5, positiveness and type-K order-preservation of the
map 5 (·) prevents themapping of a point lying in a face of standard
positive cone to be mapped into another face (as exemplified in
the previous example), thus avoiding periodicity of the sequence
of points generated by the iteration of a map.

3.3 Homogeneity of maps

In nonlinear Perron–Frobenius theory one usually considers order-
preserving maps satisfying an additional assumption such as
homogeneity and its derivations. Next, the definition of homo-
geneity in the multiplicative setting is given.

Definition 3.3.1 A Homogeneity implies sub-
homogeneity, i.e., every ho-
mogeneous map is subho-
mogeneous. The converse
relation does not hold.

map 5 : ℝ= → ℝ= is said to be

I homogeneous if ∀G ∈ ℝ= and 
 ∈ (0, 1) it holds


 5 (G) = 5 (
G).

I subhomogeneous if ∀G ∈ ℝ= and 
 ∈ (0, 1) it holds


 5 (G) ≤ 5 (
G).

Order-preserving subhomogeneous maps arise naturally in sev-
eral fields, such as the study of means, matrix scaling problems
and nonlinear matrix equations (see Section 1.4 in [134] for an
introduction and references).

Consider the bĳective mapping between ℝ= and int(ℝ=
+) given by
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the exponential map � : ℝ= → int(ℝ=
+)with

�(G) = (4G1 , . . . , 4G= ), G = (G1, . . . , G=) ∈ ℝ= ,

and its inverse, the logarithmic map ! : int(ℝ=
+) → ℝ= with

!(G) = (ln(G1), . . . , ln(G=)), G = (G1, . . . , G=) ∈ int(ℝ=
+).

Each element of ℝ= is paired with exactly one element of int(ℝ=
+).

This bĳection allows one to translate these notions of homogeneity
given in the standard positive cone ℝ=

+ into the whole real vector
space ℝ= as follows.

Definition 3.3.2 A Plus-homogeneity implies
plus-subhomogeneity,
i.e., every plus-
homogeneous map
is plus-suhbhomogeneous.
The converse relation does
not hold.

map 5 : ℝ= → ℝ= is said to be

I plus-homogeneous if ∀G ∈ ℝ= and 
 ∈ ℝ it holds

5 (G + 
1) = 5 (G) + 
1.

I plus-subhomogeneous if ∀G ∈ ℝ= and 
 ∈ ℝ it holds

5 (G + 
1) ≤ 5 (G) + 
1.

It is easy to verify that if 5 : ℝ= → ℝ= is a type-K order-
preserving plus-(sub)homogeneousmap, then the log-exp transform
6 : int(ℝ=

+) → int(ℝ=
+) of 5 (·) given by

6(I) = (� ◦ 5 ◦ !)(I), I ∈ int(ℝ=
+) (3.4)

is a type-K order-preserving (sub)homogeneous map, and vice
versa. In the literature, anorder-preservingplus-(sub)homogeneous
map is usually referred to as a (sub)topical map. Several interesting
examples of topical maps arise in optimal control and scheduling
theory (max-plus maps), in Markov decision theory and stochastic
game, (see Section 1.5 in [134] for an introduction and references).

3.4 Non-expansiveness of maps

Order-preserving maps possessing one of the variants of the
homogeneity property discussed in Section 3.3 are non-expansive
under some metric.

Definition 3.4.1 Amap 5 : ℝ= → ℝ= is said to be, non-expansive,
with respect to a metric 3 : ℝ= × ℝ= → ℝ+, if ∀G, H ∈ ℝ= and
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 ∈ ℝ it holds
3( 5 (G), 5 (H)) ≤ 3(G, H).

As we shall see later, the non-expansiveness property is a powerful
tool in the study of the iterative behavior of order-preserving
maps. It lies at the heart of many arguments in nonlinear Per-
ron–Frobenius theory. The purpose of this chapter is to discuss the
relation between order-preserving maps and non-expansive maps.
In particular, three main facts are discussed:

1. Order-preserving and subhomogeneous maps on int(ℝ=
+)

are non-expansive under the Tomphson’s metric 3) ;
2. Order-preserving and plus-subhomogeneous maps on ℝ=

are non-expansive under the sup-metric 3∞;
3. The metric spaces (int(ℝ=

+), 3)) and (ℝ= , 3∞) can be isomet-
rically embedded into each other.

Next, the Thompson’s metric and the sup-metric are formally
defined.

Definition 3.4.2 The Thompson’s metric 3) and the sup-metric
3∞ induced by the sup-norm are defined by

3)(G, H) =


ln

(
max

{
max
8

G8

H8
,max

8

H8

G8

})
if G ∼ H

0 if G = H = 0

∞ otherwise

3∞(G, H) =
����G − H����∞ = max

8
|G8 − H8 |.

The next result is taken from [4] but it is stated here for the standard
positive cone  = ℝ=

+.

Proposition 3.4.1 [4] An order-preserving map 5 : ℝ=
+→ ℝ=

+ is
non-expansive, w.r.t. the Tomphson’s metric 3) , if and only if is
subhomogeneous.

For the sake of readability, some times the short expression Thomp-
son non-expansive will be used instead of non-expansive w.r.t. the
Thompson’s metric. The next result is taken from [47] but it is stated
here for sup-metric.

Proposition 3.4.2 [47] An order-preserving map 5 : ℝ= → ℝ= is
non-expansive, w.r.t. the sup-metric 3∞, if is plus-subhomogeneous;
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Basic notion about trajec-
tories and periodic points
are given in Appendix A.1.

For the sake of readability, some times the short expression sup-
norm non-expansivewill be used instead of non-expansive w.r.t. the
sup-metric. The results of Proposition 3.4.1 and Proposition 3.4.2
can also be obtained one from the other by using the log-exp
transform (3.4), as the following proposition suggests..

Proposition 3.4.3 [134] [134] Lemmens and
Nussbaum (2012), Nonlin-
ear Perron-Frobenius Theory.I The map ! is an isometry from (int(ℝ=

+), 3)) onto (ℝ= , 3∞).
I The map � is an isometry from (ℝ= , 3∞) onto (int(ℝ=

+), 3)).

This allows us to translate results from the multiplicative homoge-
neous setting in Definition 3.3.2 to the additively homogeneous
setting in Definition 3.3.1 3.3.1 and vice versa. This strategy is used
in the next section to prove our main results.

3.5 Stability analysis via nonlinear PF
theory

It is easy to realize that the sequence of points generated by the
recursive iteration of a map 5 (·) starting from a point G0 ∈ ℝ

corresponds to the trajectory of a dynamical systems G(: + 1) =
5 (G(:))with initial condition G(0) = G0.

Definition 3.5.1 The trajectory T(G0, 5 ) of system (3.1) with initial
state G0 ∈ ℝ is given by

T(G, 5 ) =
{
5 :(G0) : : ∈ ℤ

}
.

If the map 5 is clear from the context, we simply write T(G0).

Definition 3.5.2 A trajectory T(G0, 5 ) is said to be:

I bounded if it has both upper and lower bounds, i.e., there exist
0, 1 ∈ ℝ such that G ∈ [0, 1] for all G ∈ T(G0, 5 ); otherwise, it
is said to be unbounded;

I periodic if it is bounded and if there exists ? ∈ ℤ+ such that
5 ?(G) = G for all G ∈ T(G0, 5 );

Note that all points in a periodic trajectory are periodic points of
period ? ∈ ℤ+, i.e., 5 ?(G) = G; a periodic point of period ? = 1
is said to be a fixed of the map 5 or an equilibrium point of the
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system, for which holds 5 (G) = G. Let us consider the following
map 5 : ℝ3 → ℝ3 as an example

5
©­«

G1
G2
G3

ª®¬ =


G1
�G2
G3

 , 
, � ∈ ℝ+

and consider a trajectory T(G, 5 ), given next

T(Ḡ , 5 ) =


G1
G2
G3

 ,


G2
�G3
G1

 ,


�G3
�G1

G2

 ,


�G1

�G2

�G3

 ,


2�G2

�2G3

�G1

 , · · ·
 .

We consider the following cases:

I If 
� = 1 and 
 ≠ � ≠ 1, then

• All points Ḡ = �[2, 1, 2] with � ∈ ℝ+ are fixed points,
thus the trajectory contains onlyonepointT(Ḡ , 5 ) = {Ḡ};

• All other points G ≠ Ḡ are periodic points of pe-
riod ? = 3, thus the trajectory contains only 3 points
T(Ḡ , 5 ) = {[G1, G2, G3]ᵀ, [
G2, �G3, G1], [G3, �G2, 
G2]}.

I If 
 = � = 1, then all points G ∈ ℝ3 are fixed points, thus all
trajectories contains only one point T(G, 5 ) = {G}.

I If 
� < 1, then all trajectories are bounded and converge to
the point 0 = [0, 0, 0]ᵀ, which is the only fixed point of map
5 , i.e., 5 (0) = 0 and T(0, 5 ) = {0}.

I If 
� > 1, then all trajectories are unbounded but T(0, 5 ).

Thus, studying the properties of the iterative behavior of a map
amounts to the analysis of the trajectories of the associated dy-
namical systems. Here, we consider dynamical systems which are
ruled by positive, type-K order-preserving maps possessing one
of the variation of homogeneity property, object of the nonlinear
Perron-Frobenius theory introduced in the previous sections.

For a nonlinear positive map 5 (·), the trajectories of the system
G(: + 1) = 5 (G(:)) starting at different points show in general a
very different convergence behavior. For example, one trajectory
may tend to infinity whereas another one tends to zero or still
another one converges to a point in the interior of the underlying
cone. This is true even in one dimension as exemplified by the
system G(: + 1) = G2(:). The situation drastically changes if the
positive system is linear: a linear system defined by a primitive
matrix shows a uniform behavior for all starting points inℝ=

+ \ {0}
that is either
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I all trajectories tend to infinity,
I all trajectories tend to zero,
I all trajectories tend to converge to a fixed point in the interior

of the standard positive cone.

This property is called limit set trichotomy. For a system given
by a primitive matrix this property follows from classical Per-
ron–Frobenius Theory (see Theorem 3.1.2), where the trichotomy
is due to the three cases whether the dominant eigenvalue is
greater or smaller or equal to 1, respectively. The interested reader
is referred to [125] for a comprehensive coverage of positive maps,
with particular attention to Chapter 6 and several generalization
of this limit set trichotomy to more general positive maps. In
Figure 3.6 a stylized picture of limit set trichotomy illustrates this
in one dimension. Respectively, map 51, 52, 53 stand for the case
that for all points in the interior of the standard positive cone the
trajectory tends to zero, to a unique fixed point, and to infinity.
An example of these functions is 51(G) = atan(G), 52(G) =

√
G,

53 = G + ln(G + 1). Clearly, in = dimension the analysis becomes
even more complicated due to the possible presence of periodic
points.

This motivates the study of the iterative behavior of sup-norm
non-expansive maps which have some striking properties: their
bounded trajectories always converge to a periodic trajectory and
they are either all bounded or unbounded. These two facts are
formally stated in the next propositions [134].

f1(x)

f3(x)

f2(x)

R

R

Figure 3.6: Limit set tri-
chotomy in one dimension.

Proposition 3.5.1 If 5 : ℝ= → ℝ= is a sup-norm non-expansive
map and the trajectory T(G, 5 ) of system (3.1) starting at G ∈ ℝ= is
bounded, then it converges to a periodic trajectory, i.e., there exists an
integer ? ≥ 1 and a periodic point Ḡ ∈ ℝ= with period ? such that

lim
:→∞

5 :?(G) = Ḡ.

Proposition 3.5.2 If 5 : ℝ= → ℝ= be a sup-norm non-expansive
map, then trajectories are all either bounded or unbounded.

If the map is merely nonexpansive, then the sequence generated
by their recursive iteration may fail to converge to a fixed point.
For instance, this is the case for 5 (G) = −G. Thus, our goal is the
identification of classes of maps possessing the non-expansiveness
property such that all trajectories are bounded and no trajectory
tends to a periodic point, i.e., all trajectories converge to a fixed
point of the map or equivalently the system converges to one of
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its equilibrium points. For linear maps, it has been proved that a
necessary and sufficient condition ensuring the convergence to a
fixed point is the averagedness of the map [Belgioioso18, 41], while
for nonlinear maps the averagedness property has been shown to
be a sufficient condition since a long time [23], but not necessary.

By taking inspiration from nonlinear Perron-Frobenius theory,
here the focus is on maps preserving the order induced by the
standard positive cone and that possess also one of the variants of
the homogeneity property, thus ensuring their non-expansiveness
with respect to some norm. In particular, the novel version of
order-preservation originally presented in [112], the so-called type-
K order-preservation, is the key ingredient in the proofs of our results,
in particular convergence results are carried out for two classes of
maps:

I Type-K order-preserving and subhomogeneous maps in the
standard positive cone ℝ=

+, see Theorem 3.5.3;
I Type-K order-preserving and plus-subhomogeneous maps

in the whole real vector space ℝ= , see Theorem 3.5.4.

For positivemapswhich are also order-preserving and subhomoge-
neous, existing results do not provide any condition to ensure
convergence to a fixed point, but only to periodic points [133].
Furthermore, the analysis is carried out only in the interior of the
standard positive cone, i.e., G ∈ int(ℝ=

+), and, to the best of our
knowledge, no result provides any information about trajectories
whose initial state lies in the boundary ofℝ=

+. Our aim is thus to fill
this void by considering the stricter order-preservation property,
called type-K order-preservation, for which convergence to a fixed
point from any initial state G ∈ ℝ=

+ and not only for G ∈ int(ℝ=
+) is

proved. This result is given in next theorem.

Theorem 3.5.3 Let a map 5 : ℝ=
+→ ℝ=

+ be type-K order-preserving
and subhomogeneous. If 5 has at least one positive fixed point, then it
holds that

lim
:→∞

5 :(G) = Ḡ , ∀G ∈ ℝ=
+

where Ḡ ∈ �( 5 ) is a fixed point of 5 (·).

By exploiting the isometry in Proposition 3.4.3, the convergence to
the set of fixed points for maps being type-K order-preserving and
plus-subhomogeneus acting in the whole real vector space ℝ= is
proved.
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Theorem 3.5.4 Let a map 5 : ℝ= → ℝ= be type-K order-preserving
and plus-subhomogeneous. If 5 has at least one fixed point, then it
holds that

lim
:→∞

5 :(G) = Ḡ , ∀G ∈ ℝ=
+

where Ḡ ∈ �( 5 ) is a fixed point of 5 (·).

Proof of Theorem 3.5.3

Before giving the proof of this theorem it is necessary to introduce
some useful lemmas.

Lemma 3.5.5 Let a map 5 : ℝ=
+→ ℝ=

+ be type-K order-preserving.
For all G ∈ ℝ=

+ it holds that 5 :8 (G) > 0 for all 8 such that G8 > 0 and
: ≥ 1.

Proof. For any G ∈ ℝ=
+ let �(G) ⊂ {1, . . . , =} be such that G8 > 0

for 8 ∈ �(G) and G8 = 0 otherwise. Since 0 ≤ G, by type-K order-
preservation of 5 follows 5 (0) ≤ 5 (G). More precisely it holds
58(G) > 58(0) ≥ 0 for 8 ∈ �(G) and 58(G) ≥ 58(0) ≥ 0 otherwise,
implying �(G) ⊆ �( 5 (G)). By induction, �(G) ⊆ �( 5 :(G)), i.e., 5 :

8
(G) >

0 for all 8 ∈ �(G), completing the proof.

Lemma 3.5.6 Let a map 5 : ℝ=
+→ ℝ=

+ be type-K order-preserving
and subhomogeneous. For all G ∈ ℝ=

+ there exists a part % ∈ P(ℝ=
+)

and an integer :0 ∈ ℤ such that 5 :(G) ∈ % for all : ≥ :0.

Proof. Since 5 is order-preserving and subhomogeneous, then 5

is non-expansive under Thompson’s metric (see Definition 3.4.2)
by Proposition 3.4.1. Thus, G ∼ H implies 5 (G) ∼ 5 (H). This can be
easily proved by noticing that 3)( 5 (G), 5 (H)) ≤ 3)(G, H) < ∞ since
G ∼ H. This means that 5 maps parts into parts, i.e., for all G ∈ ℝ=

+
and G′ ∈ [G] = %�0 it holds 5 (G′) ∈ [ 5 (G)] = %�1 . By Lemma 3.5.5
it follows %�0 � %�1 and therefore [G] � [ 5 (G)]. Generalizing, one
can state that 5 :(G) ∈ %�: with : ∈ ℤ and �: ⊆ �:+1 ⊆ {1, . . . , =}.
There exists :0 ∈ ℤ such that �: = �:0 for all : > :0 and thus
%: = %:0 . This completes the proof.

Lemma 3.5.7 Let a map 5 : ℝ=
+→ ℝ=

+ be type-K order-preserving
and subhomogeneous. If 5 has a positive fixed point Ḡ ∈ ℝ=

+, then for
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all G ∈ ℝ=
+ the trajectory T(G) is bounded.

Proof. By Proposition 3.4.3, function 6 = log ◦ 5 ◦exp is a sup-norm
non-expansive map that has the same dynamical properties as 5
for all G ∈ ℝ=

+. By Proposition 3.5.2, one of the two cases can occur:

(8) all trajectories T(log(G), 6) are unbounded;
(88) all trajectories T(log(G), 6) are bounded.

Since 5 has a fixed point G 5 ∈ ℝ=
+, such that 5 (G 5 ) = G 5 , then

G6 = log(G 5 ) is a fixed point of 6, i.e., 6(G6) = G6 . The trajectory
T(log(G 5 ), 6) is obviously bounded and therefore case (88) holds.

By Lemma 3.5.6,ℝ=
+ is partitioned into two disjoint sets (1, (2 such

that if for G there exists :0 ∈ ℤ such that 5 :0(G) ∈ ℝ=
+, then G ∈ (1,

otherwise G ∈ (2. Next, the two cases are analyzed.

1) For all G ∈ (1, by Lemma 3.5.6, it holds that 5 :(G) ∈ ℝ=
+ for

all : ≥ :0. Let G0 = 5 :0(G). Since case (88) holds T(log(G0), 6) is
bounded, because of the isometry also T(G0, 5 ) is bounded, and
therefore also T(G, 5 ). Therefore, for all G ∈ (1 trajectories T(G, 5 )
are bounded.

2) For all G ∈ (2, by Lemma 3.5.6, there exists :0 ∈ ℤ such that
5 :(G) ∈ %� with �(G) ⊂ # = {1, . . . , =} for all : ≥ :0. Without
loss of generality, here it is assumed that � = {1, . . . , <}, where
< < =. Let G = [Iᵀ1 , I

ᵀ
2 ]ᵀ with I1 ∈ ℝ<

+ and consider the following
<-dimensional map 5 ∗ : ℝ<

+ → ℝ<
+ defined by

5 ∗8 (I1) = 58(I1, I2), I2 = 0 ,

with 8 ∈ �(G). It is not difficult to check that 5 ∗ is still subhomoge-
neous and type-K order-preserving.Accordingly, 6∗ = log ◦ 5 ∗◦exp
is a sup-norm non-expansive map that has the same dynamical
properties as 5 ∗ for all G ∈ ℝ<

+ . The main point now is to prove that
if (88) occurs then all trajectories T(log(I1), 6∗) are also bounded.
To this aim, first is is shown that for all 8 ∈ �(G) it holds

6∗8 (I1) ≤ 68(I1, I2). (3.5)

Since both the exponential and the logarithmic functions are strictly
increasing, (3.5) is equivalent to

5 ∗8 (I1) ≤ 58(I1, I2). (3.6)

By definition, (3.6) holds if I2 = 0. If I2 ≠ 0, for any G = [Iᵀ1 , I
ᵀ
2 ]ᵀ

consider Ḡ = [Iᵀ1 , Ī
ᵀ
2 ]ᵀ such that Ī2 = 0. Since 5 is order-preserving,
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for all 8 ∈ � it holds that 58(Ḡ) ≤ 58(G), which is equivalent to write
58(I1, Ī2) ≤ 58(I1, I2). By definition, 5 ∗

8
(I1) = 58(I1, Ī2). Therefore,

5 ∗
8
(I1) ≤ 58(I1, I2) for all I2 ≠ 0, i.e., (3.6) and (3.5) hold. Suppose

that (88) occurs and there exist Î1 ∈ ℝ<
+ such that T(log(Î1), 6∗) is

unbounded. By (3.5) it is clear that given Ĝ = [Îᵀ1 , I
ᵀ
2 ]ᵀ the trajectory

T(log(Ĝ), 6) is also unbounded, contradicting (88). Let G0 = 5 :0(G).
Since all trajectories T(log(G0), 6) are bounded, because of the
isometry also T(G0, 5 ) is bounded, and therefore also T(G, 5 ).
Therefore, for all G ∈ (2 trajectories T(G, 5 ) are bounded.

Finally,using the above lemmas, the proof of Theorem 3.5.3 is car-
ried out. By Lemma 3.5.7, trajectories of positive, subhomogeneous
and type-K order-preserving maps with a positive fixed point are
bounded for all G ∈ ℝ=

+. By Proposition 3.5.1, each bounded trajec-
tory converges to a periodic point and, by Theorem 2.3 in [112], all
periodic points are fixed points. Therefore,

lim
:→∞

5 :(G) = Ḡ , ∀G ∈ ℝ=
+

where Ḡ ∈ �( 5 ) is a fixed point of 5 (·), completing the proof.

Proof of Theorem 3.5.4

If map 5 : ℝ= → ℝ= is type-K order-preserving, then the log-exp
transform 6 : int(ℝ=) → int(ℝ=) of 5 (·) given by ℎ = exp ◦ 5 ◦ log
for I ∈ int(ℝ=) is still type-K order-preserving. This can be easily
proved by noticing that the exponential and logarithmic functions
are strictly increasing. Furthermore, plus-subhomogeneity of 5 (·)
is inherited as subhomogeneity by 6(·), as shown next

6(
G) = 4 5 (ln(
G)) = 4 5 (ln(
)+ln(G)) ≥ 4 5 (ln(
))+ 5 (ln(G))

≥ 4 ln(
)+ 5 (ln(G)) ≥ 4 ln(
)4 5 (ln(G)) ≥ 
6(G)

Let Ḡ ∈ ℝ= be a fixed point such that 5 (Ḡ) = Ḡ. Its mapping
Ī = �(Ḡ) = 4 Ḡ is a fixed point of ℎ(·), i.e., 6(Ī) = Ī.

Now, Theorem 3.5.3 can be exploited by noticing that map 6(·) is
type-K order preserving and subhomogeneous and has a positive
fixed point Ī ∈ int(ℝ=

+), thus concluding that 6(·) does not have
any periodic point with period ? > 1, i.e., all its periodic points
are fixed points. Since eventually periodic points of 5 (·) would be
mapped into periodic points of 6(·) by the exponential function,
and vice versa by the logarithmic function, therefore 5 (·) does



3 Stability of nonlinear dynamical systems 41

not have periodic points. By Proposition 3.5.2, map 5 (·) is non-
expansive under the sup-norm and then by Proposition 3.5.2, only
one of the following two cases can occur:

(8) all trajectories T(G, 5 ) are unbounded;
(88) all trajectories T(G, 5 ) are bounded.

The presence of a fixed point Ḡ ∈ ℝ implies that the trajectory
T(Ḡ , 5 ) is bounded and so all others, as in case (88). Since all
trajectories are bounded but no periodic trajectories exist, therefore
all trajectories converge to a fixed point, thus completing the
proof.
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Stability and consensus of
discrete-time MASs 4

In this chapter MASs in which the agents are single discrete-time
integrators are considered. The dynamics of each agent is described
by

G8(: + 1) = 58(G8(:), G 9(:) : 9 ∈ N8). (4.1)

where G8(:) ∈ ℝ represents the state of the 8-th agent at time :.
Denoting G = [G1, · · · , G=]ᵀ the state of theMAS, with = ∈ ℕ being
the number of the agents, the global dynamics is written as

G(: + 1) = 5 (G(:)). (4.2)

In the linear case classical Perron-Frobenius theory is crucial
in the convergence analysis of MASs, as recalled in Chapter 3.
A topic that captured the attention of many researchers is the
consensus problem [176], where the objective is to design local
interaction rules among agents such that their state variables
converge to the same value, the so called agreement or consensus
state. Indeed, in one of the seminal works on this topic [110], the
authors established criteria for convergence to a consensus state for
MASs whose global dynamics can be represented by linear time-
varying systems with nonnegative row-stochastic state transition
matrices. The most notable aspect of this approach was a novel
setting based on Perron-Frobenius theory for proving convergence
based on algebraic theory and graph theory instead of Lyapunov
theory. This allows one to study systems for which finding a
common Lyapunov function to establish convergence is difficult
or even impossible: such is the case of switched linear systems for
which does not exist a common quadratic Lyapunov function, as
shown in [177].

Along this line of thought, in this chapter the results given in
Section 3.5 which are based on nonlinear Perron-Frobenius the-
ory [134] are exploited to study stability of discrete-time MASs
without Lyapunov based arguments. MASs evolving in a real
vector state spaceX ⊆ ℝ= with nonlinear dynamics given by map
5 : X→ X are considered. In particular, two classes of dynamics
are considered:

I Type-K order-preserving and subhomogeneous maps in the
standard positive cone ℝ=

+;
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[134] Lemmens and
Nussbaum (2012), Nonlin-
ear Perron-Frobenius Theory.
[125] Krause (2015), Posi-
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crete time: theory,models, and
applications.

I Type-K order-preserving and plus-subhomogeneous maps
in the whole real vector space ℝ= .

In Section 3.5 the convergence properties of the iterative behavior
of these classes of maps was analyzed by exploiting fixed-point
theory and nonlinear Perron-Frobenius theory instead of Lyapunov
theory. The main contribution of this chapter is the application of
these newmathematical instruments to the analysis of the stability
and convergence to consensus of MASs. More precisely, for each
of these classes:

I Sufficient conditions on the local interaction rule of a generic
agent are proposed (such a rule can be potentially different
for each agent, i.e., heterogeneous) which guarantees that
the system falls into the considered class and is stable if a
positive equilibrium point exists;

I Sufficient conditions linking the topology of the network
and the structure of the local interaction rules are proposed,
which guarantees the achievement of a consensus state, i.e.,
the network state in which all state variables have the same
value.

4.1 Type-K order-preserving and
subhomogeneous systems

The dynamical systems of interest possess the property of order-
preservation with respect to the standard positive cone and sub-
homogeneous, which are object of nonlinear Perron-Frobenius
theory [134]. It is worth mentioning that there also exists a concave
Perron-Frobenius theory [125], which deals with concavemaps. For
maps acting on a cone, concavity implies both order-preservation
and subhomogeneity, but the vice versa does not hold. Thus, the
class of order-preserving and subhomogeneous maps considered
in this chapter is more general. In the next subsections, the related
literature is analyzed.

About homogeneous systems

Most of the current literature is mainly concerned with systems
evolving in the interior of the standard positive cone ruled by
maps which are order-preserving and homogeneous: these maps
need not be concave and vice versa. These maps characterize a rich
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class of dynamical systems, for which there is extensive literature
(see [95, 172] for references). Although this class of systems has
been widely studied in the literature in continuous-time, there are
few results which consider the discrete–time case. The interested
reader is referred to Chapter 5 for the continuous-time counterpart
of our results and the corresponding literature review. A funda-
mental result was presented by Gaubert and Gunawardena [91]
generalizing a result of Nussbaum [173]. These authors prove
that an eigenvector in the interior of the standard positive cone
is guaranteed to exist under the assumption that a graph G( 5 )
associated to the map 5 is strongly connected. Furthermore, the
associated eigenvalue is unique and thus it may be considered
as a spectral radius, in a limited sense. It is easy to imagine that
if the spectral radius is greater than (resp., smaller than, equal
to) 1, then the recursive iteration 5 : of the map diverges (resp.,
converge to zero or converges to a fixed point). Despite this strong
result, the iteration of order-preserving and homogeneous maps
does not always converge to a fixed point of the map, since no a
priori bound on the spectral radius is given and also because of
the presence of periodic trajectories can not be avoided a priori.

Next, recent results related to order-preserving and homogeneous
dynamical systems are reviewed. To the best of our knowledge,
no application to multi-agent systems has been discussed. Order-
preserving and homogeneous systems are a natural extension of
positive linear systems, for which there is a well-developed theory
rooted in the Perron-Frobenius theory of nonnegative matrices
[69]. Therefore, much effort has done to extend the properties
of positive linear systems. One of the main results is the global
asymptotic stability of order-preserving andhomogeneous systems
[49, 50, 99, 131] with extensions to the case of homogeneity of order
greater than one one [64] and also other newly defined kind
of homogeneity [199, 200]. Attention has also been paid to the
robustness of homogeneous maps under time delays. In particular,
robustness results are provided for systems with constant [72]
and time-varying delays [65]. Finally, another interesting object
of study are order-preserving switched homogeneous systems, a
superclass of switched linear systems, which have been the subject
of interest since the early work of [75] and more recently [19, 107,
248]. Similar results may be possibly established for the class of
subhomogeneous maps, which includes homogeneous maps.
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About Moreau’s convexity condition

Most approaches that aim to establish convergence to consensus
for some class of nonlinear MAS fall in the general convexity
theory of [160], i.e., each agent’s next state is strictly inside the
convex hull spanned by its own state and the state value of its
neighbors. The class of systems studied in this chapter is not
limited to Moreau’s theory, as our application in Section 4.4 shows.
In fact, the considered dynamical system is a distributed algorithm
to estimate the maximum among all initial agents’ state, therefore
not satisfying a strict convex condition. The study of dynamical
equations not satisfying a strict convexity assumption is beyond
the scope of [160].

About differential positivity

The differential positivity framework, developed by Forni et al.
in [77], addresses a problem setup similar to the one in this chapter.
Themain common point between the results of this chapter and the
work in [77] is the fact that both consider positive systems. Positivity
in [77] is intended in the sense of cone invariance; positivity is said
to be strict if the boundary of the cone is eventually mapped to the
interior of the cone. In contrast, results in this chapter are restricted
to systems with a state space X= ℝ and a constant invariant cone
 = ℝ=

+. For such systems, by Theorem 1 in [77], it follows

differential positivity ⇔ order-preservation,
strict differential positivity ⇔ strong order-preservation.

The results in [77] are limited to strictly differentially positive
systems: no convergence results are provided for differentially
positive systems. A simple example given next shows that the class
of maps addressed in our work is differentially positive but not
strict,

G(: + 1) = �G(:), � =

[
1 0
� 1 − �

]
, � ∈ (0, 1).

Map �G is not strictly differentially positive because it does not
map the boundary of the positive orthant to its interior and this is
true for any G = [0, 
]ᵀ, with 
 ∈ ℝ. However, map � is type-K
order-preserving since it is Metzler with strictly positive diagonal.
Exploiting the notion of type-K order-preservation in the context
of differential positivity may enlarge the class of systems that
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can be studied under a general framework encompassing the two
approaches.

4.2 Stability and consensus analysis

Before establishing the main results of this section, we formally
define the graph associated to a MAS when the local interaction
rules are assumed to be nonlinear and differentiable.

Definition 4.2.1 Given a differentiable map 5 : - → - with
- ⊆ ℝ= , its inference graph G( 5 ) = (+, �) has a set of = nodes
+ = {1, . . . , =} and a set of directed edges � ⊆ + × + . An edge
(8 , 9) ∈ � from node 8 to node 9 exists if

%

%G 9
58(G) ≠ 0, ∀G ∈ - \ (,

where ( is a set of measure zero in -.

Stability analysis

Next theorem gives sufficient conditions on the structure of the
local interaction rules of a discrete-time MAS as in (4.1) so that
the global map is a positive, type-K order-preserving and subho-
mogeneous map. Such a dynamical system belongs to the class of
systems considered in Theorem 3.5.3, and thus the convergence
to an equilibrium point of the system is ensured for any initial
condition in ℝ=

+.

Theorem 4.2.1 Consider = agents evolving according to

G8(: + 1) = 58(G8(:), G 9(:) : 9 ∈ N8).

If the MAS has at least one positive equilibrium point and if the set
of differentiable positive local interaction rules 58 : ℝ=

+→ ℝ+, with
8 = 1, . . . , =, satisfies the two conditions:

(8) % 58/%G8 > 0 and % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 
 58(G) ≤ 58(
G) for any 
 ∈ [0, 1] and G ∈ ℝ=

+;

then the MAS asymptotically converges to one of its equilibrium points
for any positive initial state G(0) ∈ ℝ=

+.
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Proof. The proof starts by establishing an equivalence between the
properties (8) − (88) in the statement of the theorem and properties
(a)-(b) shown next:

(0) 5 is type-K order-preserving;
(1) 5 is subhomogeneous;

Each equivalence is proved next:

I [(8) ⇔ (0)] due to Kamke-like condition in Proposition 3.2.1.
I [(88) ⇔ (1)] by Definition 3.3.1 of a subhomogeneous map,

subhomogeneity can be verified element-wise for map 5 ,
thus the equivalence follows.

If conditions (8)-(88) hold for all local interaction rules 58 with
8 = 1, . . . , =, since by assumption map 5 has at least one positive
fixed point, the result in Theorem 3.5.3 ensures that for all positive
initial conditions, the state trajectories of the MAS converge to one
of its positive equilibrium points.

In the next theorem, sufficient conditions on the structure of
the local interaction rules of a discrete-time MAS as in (4.1) so
that the global map is a positive, type-K order-preserving and
plus-homogeneous map, thus falling within the class of systems
considered in Theorem 3.5.4 and ensuring the stability of the MAS
for any initial condition in ℝ= .

Theorem 4.2.2 Consider = agents evolving according to

G8(: + 1) = 58(G8(:), G 9(:) : 9 ∈ N8).

If the MAS has at least one positive equilibrium point and if the set of
differentiable local interaction rules 58 : ℝ= → ℝ, with 8 = 1, . . . , =,
satisfies the next conditions:

(8) % 58/%G8 > 0 and % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 58(G + 
1) = 58(G) + 
1 for any 
 ∈ ℝ;

then the MAS asymptotically converges to one of its equilibrium points
for any initial state G(0) ∈ ℝ= .

Proof. The proof starts by establishing equivalence relationships
between the properties (8) − (88) of the local interaction rules of the
MAS listed in the statement of the theorem and properties (a)-(b)
shown next:

(0) 5 is type-K order-preserving;
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(1) 5 is plus-homogeneous;

Each equivalence reads as:

I [(8) ⇔ (0)] due to Kamke-like condition in Proposition 3.2.1.
I [(88) ⇔ (1)] by Definition 3.3.1 of a plus-homogeneous map,

plus-homogeneity can be verified element-wise for map 5 ,
thus the equivalence follows.

If conditions (8)-(88) hold for all local interaction rules 58 with
8 = 1, . . . , =, since by assumption map 5 has at least one positive
fixed point, the result in Theorem 3.5.4 can be exploited to establish
that for all positive initial conditions, the state trajectories of the
MAS converge to one of its positive equilibrium points.

Consensus analysis

Asa special case, the consensusproblem for the two classes ofMASs
considered in the previous subsection is studied. Two additional
sufficient conditions are given. The first condition ensures that
the consensus state is an equilibrium manifold for the MAS. The
second condition is based on the inference graph G( 5 ); it requires
that there must exists a globally reachable node in graph G( 5 )
and it implies that the consensus state manifold becomes globally
asymptotically stable for the MAS. These two conditions applied
to MASs as in eq. (4.1) satisfying conditions of Theorem 4.2.1
guarantee that the MAS asymptotically reaches the consensus
state.

Before stating the main result, we need to prove some intermediate
lemmas. The first important lemma establishes row-stochasticity of
the Jacobian matrix of a map evaluated at consensus points if the
consensus manifold contains only fixed points. The second lemma
establishes that if additionally there exists a fixed point outside the
consensus manifold then there exists a consensus point at which
the Jacobian has a unitary eigenvalue � = 1 with multiplicity
strictly greater than one.

Lemma 4.2.3 Let a map 5 : ℝ=
+→ ℝ=

+ be differentiable. If the set
of fixed points �( 5 ) of map 5 satisfies �( 5 ) ⊇ {21, 2 ∈ ℝ+}, i.e.,
the set of fixed points contains all positive consensus states, then the
Jacobian matrix � 5 of map 5 computed at a consensus point 21 is
row-stochastic, i.e.,

� 5 (21)1 = 1 ∀2 ∈ ℝ+ .
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Proof. Since 5 is differentiable, one can apply directly the definition
of directional derivative in a point G ∈ ℝ=

+ along a vector E ∈ ℝ=

obtaining

� 5 (G)E = lim
ℎ→0

5 (G + ℎE) − 5 (G)
ℎ

.

Evaluating this expression in a consensus point G = 21 ∈ �( 5 ) and
along the direction E = 1 (which is an invariant direction of 5 ) it
follows

� 5 (21)1 = lim
ℎ→0

5 (21 + ℎ1) − 5 (21)
ℎ

,

= lim
ℎ→0

��21 + ℎ1 −��21

ℎ
= 1 ,

thus proving the statement.

Lemma 4.2.4 Let a map 5 : ℝ=
+→ ℝ=

+ be type-K order-preserving
and sub-homogeneous. Let the set of fixed points �( 5 ) of map 5 satisfies
�( 5 ) ⊇ {21, 2 ∈ ℝ+}, i.e., the set of fixed points contains all
positive consensus states. If there exists a fixed point Ḡ ∈ ℝ=

+ such that

Ḡ ≠ 21 , ∀2 ∈ ℝ+

then there exists 2̄(Ḡ) > 0 such that the Jacobian matrix � 5 (2̄(Ḡ)1) of
map 5 computed at 2̄(Ḡ)1 has an eigenvalue � = 1 with multiplicity
strictly greater than one.

Proof. Let Ḡ = [Ḡ1, . . . , Ḡ=]ᵀ ∈ ℝ=
+ be a fixed point of map 5 and

let 21, 22 ∈ ℝ+ be such that

21 = min
8=1,...,=

Ḡ8 ,

22 = max
8=1,...,=

Ḡ8 .

By defining three sets as follows,

�<8=(Ḡ) = {8 : Ḡ8 = 21},
�<0G(Ḡ) = {8 : Ḡ8 = 22},

�(Ḡ) = {8 : Ḡ8 ≠ 21, 22},

consider a point H such that the 8-th component is defined by

H8 =

{
21 if 8 ∈ �<8=(Ḡ)
23 otherwise

(4.3)
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and such that

211 � H � Ḡ � 221 . (4.4)

By (4.3) and (4.4) it follows that

H ≤ 231. (4.5)

I Since map 5 is type-K order-preserving, from (4.4) it follows
21 ≤ 58(H) ≤ Ḡ8 and from (4.5) 58(H) ≤ 23 for 8 = 1, . . . , =.
For 8 ∈ �<8=(Ḡ), by definition Ḡ8 = 21 and thus 58(H) = 21,
otherwise for 8 ∈ �(Ḡ) ∪ �<0G(Ḡ) by (4.4) Ḡ8 ≥ H8 = 23 and it
follows 21 ≤ 58(H) ≤ 23. Therefore, it holds

5 (H) ≤ H. (4.6)

I Since 5 is order-preserving and sub-homogeneous, then 5

is non-expansive under the Thompson’s metric (see Defini-
tion 3.4.2) by Proposition 3.4.1. Now, by exploiting the defi-
nition of non-expansive map, an upper bound to 3)(Ḡ , 5 (H))
is computed. It holds

3)(Ḡ , 5 (H)) ≤ 3)(Ḡ , H) = log
(
max

{
"(Ḡ/H), "(H/Ḡ)

})
(4.7)

where

"(Ḡ/H) = max
8

H8

G8
= 1,

"(H/Ḡ) = max
8

G8

H8
≤ 22
23
.

Since 22 ≥ 23, then

3)(Ḡ , 5 (H)) ≤ log
(
22
23

)
. (4.8)

On the other hand

3)(Ḡ , 5 (H)) = log
(
max

{
"(Ḡ/ 5 (H)), "( 5 (H)/Ḡ)

})
where

"(Ḡ/ 5 (H)) = max
8

58(H)
G8

= 1,

"( 5 (H)/Ḡ) = max
8

G8

58(H)
≥ 22
23
.
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Since 22 ≥ 23 then

3)(Ḡ , 5 (H)) ≥ log
(
22
23

)
. (4.9)

By the upperbound (4.8) and the lowerbound (4.9) it follows

3)(Ḡ , 5 (H)) = log
(
max
8

G8

58(H)

)
= log

(
22
23

)
.

Therefore, it holds

23
22
Ḡ8 ≤ 58(H) ≤ 23, 8 = 1, . . . , = . (4.10)

Consider now the iterative behavior of 5 with initial point H: due to
Theorem 3.5.3, for each component 58 of 5 it holds lim

:→∞
5 :8 (H) = H̄8 .

Three cases may occur:

1. If 8 ∈ �<8=(Ḡ) then Ḡ8 = 21 and by (4.4) it follows 58(H) = 21.
2. If 8 ∈ �<0G(Ḡ) then Ḡ8 = 22 and by (4.10) it follows 58(H) = 23.
3. If 8 ∈ �(Ḡ), by (4.6) two cases may occur:

a) There exists :∗ > 0 such that 5 :∗
8
(H) < H8 . In this case,

by type-K order-preservation it holds that

5 :8 (H) < 5 :−1
8 (H) ∀: ≥ :

∗ + 1

and therefore
lim
:→∞

5 :8 (H) = 21.

b) Otherwise 5 :
8
(H) = 5 :−1(H) ∀: > 0 and therefore

lim
:→∞

5 :8 (H) = H8 = 23.

These consideration can be summarized as follows.

H̄8 =



21 if 8 ∈ �<8=(Ḡ),
23 if 8 ∈ �<0G(Ḡ),
21 if 8 ∈ �(Ḡ) and
∃:∗ : 5 :∗

8
(H) < 5 :

∗−1
8
(H),

23 otherwise.

(4.11)

So far it has been proved in (4.11) that for any fixed point Ḡ different
from a consensus point 21 there exists a fixed point H̄with elements
corresponding to either 21 or 23 and such that �(H̄) = ∅. Last step
in the proof is to consider a point I such that its 8-th component is
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defined as follows

I8 =

{
21 if 8 ∈ �<8=(H̄)
24 if 8 ∈ �<0G(H̄)

(4.12)

with 24 ∈ [21, 23]. By (4.11) and (4.12), one can conclude that I
is fixed point, i.e., 5 (I) = I, for all values of 24 in the interval
24 ∈ [21, 23]. Now, let E(Ḡ) be a vector such that

E8(Ḡ) =


0 if 8 ∈ �<8=(Ḡ)
1 if 8 ∈ �<0G(Ḡ)
0 >A 1 if 8 ∈ �(Ḡ)

, (4.13)

Thus, by (4.13) the point 211 + ℎE(Ḡ) is a fixed point of map 5 for
all ℎ ∈ [0, 23 − 21]. Thus, it follows that

5 (211 + ℎE(Ḡ)) = 211 + ℎE , ℎ ∈ [0, 23 − 21] .

Since E(Ḡ) ≠ 1, it holds (by reasoningalong the lines ofLemma4.2.3)
that the Jacobian of map 5 computed at 211 has a right eigenvector
equal to E(Ḡ), i.e., � 5 (211)E(Ḡ) = E(Ḡ). By Lemma 4.2.3 it holds that
the Jacobian of 5 satisfies � 5 (21)1 = 1 for all 2 > 0. Thus, if there ex-
ists a fixed point Ḡ ≠ 21 then there exists 2̄(Ḡ) = min8=1,...,= Ḡ8 = 21
such that matrix � 5 (2̄(Ḡ)1) has a unitary eigenvalue with multi-
plicity strictly greater than one, thus proving the statement of this
lemma.

By means of the two above lemmas, we are ready to prove by
contradiction that if the set of equilibrium points of a dynamical
systems, satisfying the properties of type-K order-preservation
and subhomogeneity, contains the consensus points, then no other
equilibrium points may exist. This proves the convergence of all
trajectories of a MAS to a consensus state by exploiting Theorem
4.2.1.

Theorem 4.2.5 Consider = agents evolving according to

G8(: + 1) = 58(G8(:), G 9(:) : 9 ∈ N8).

If the set of differentiable local interaction rules 58 : ℝ=
+→ ℝ+, with

8 = 1, . . . , =, satisfies the next conditions:

(8) % 58/%G8 > 0 and % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 
 58(G) ≤ 58(
G) for all 
 ∈ [0, 1] and G ∈ ℝ=

+;
(888) 58(G) = G8 if G8 = G 9 for all 9 ∈ N8 ;
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(8E) The inference graph G( 5 ) has a globally reachable node;

then, the MAS asymptotically converges to a consensus state for any
initial state G(0) ∈ ℝ=

+.

Proof. The proof starts by recalling that conditions (8)-(88) are
equivalent to the properties of type-K order-preservation and plus-
subhomogeneity of the map 5 , as shown in the proof of Theorem
4.2.2. By Theorem 4.2.2, one knows that for any initial conditions
G ∈ ℝ= , the MAS converge to its set of equilibrium points �( 5 ).

Now,we are going to show that the additional conditions (888)−(8E)
restrict the equilibrium point set �( 5 ) to the consensus space

C= {
1 : 
 ∈ ℝ},

which will complete the proof. Condition (888) implies that the
consensus space 21 is a subset of the set of fixed points �( 5 ) of
map 5 , i.e.,

�( 5 ) ⊇ {21 : 2 ∈ ℝ+}.

ByLemma4.2.3 the Jacobianmatrix � 5 (21) evaluated at a consensus
point is row-stochastic, i.e., � 5 (21)1 = 1. Clearly, it holds that
G( 5 ) = G(� 5 (21)). Thus G(� 5 (21)) has a globally reachable node
by hypothesis and is aperiodic because condition (88) ensures a
self-loop at each node.

Assume now that there exists a fixed point Ḡ ≠ 21 with 2 ∈ ℝ=
+.

Then, by Lemma 4.2.4 the Jacobian matrix � 5 (21) has a unitary
eigenvalue � = 1 with multiplicity strictly greater than one. On
the other hand, it is well known (e.g., see Theorem 5.1 in [32])
that if G(� 5 (21)) has a globally reachable node and is aperiodic
then � 5 (21) has a simple unitary eigenvalue with corresponding
eigenvector equal to 1, unique up to a scaling factor 2. This is a
contradiction, therefore it does not exist a fixed point Ḡ such that
Ḡ ≠ 21 with 2 > 0. Therefore, the set of fixed points of map 5

satisfies
�( 5 ) = {21, 2 ∈ ℝ+}.

Summarizing, if conditions (0)-(1) are satisfied, then by Theo-
rem 4.2.1 the MAS converges to its set of fixed points �( 5 ). If also
(2) is satisfied, the �( 5 ) contains only consensus points and thus
the MAS in converges to a consensus state for all G ∈ ℝ=

+.

A similar result is given for MASs satisfying the properties of
type-K order-preservation and plus-homogeneity. Also in this case,
if the consensus subspace contains only equilibrium points, then
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no other equilibrium points exist. This fact is shown in the next
theorem.

Theorem 4.2.6 Consider = agents evolving according to

G8(: + 1) = 58(G8(:), G 9(:) : 9 ∈ N8).

If the set of differentiable local interaction rules 58 : ℝ= → ℝ, with
8 = 1, . . . , = and ℓ = 1, . . . , 3, satisfies the next conditions:

(8) % 58/%G8 > 0 and % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 58(G + 
1) = 58(G) + 
 for any 
 ∈ ℝ;
(888) 58(0) = 0;
(8E) Inference graph G( 5 ) has a globally reachable node;

then, the MAS asymptotically converges to a consensus state for any
initial state G(0) ∈ ℝ= .

Proof. The proof starts by establishing the relations between prop-
erties (8) − (8E) and the following:

(0) 5 is type-K order-preserving;
(1) 5 is subhomogeneous;
(2) �( 5 ) = {21 : 2 ∈ ℝ+}.

Each relation is proven next:

1. [(8) ⇔ (0)] See Proposition 3.2.1 (Kamke-like condition).
2. [(88) ⇔ (1)] See Proof of Theorem 4.2.2.
3. [(8 − 8E) ⇒ (2)] The proof of this implication is given below.

Exploiting the result in Theorem 4.2.1 one knows that for any initial
conditions G ∈ ℝ= , the MAS converge to its set of equilibrium
points �( 5 ). It is shown that conditions (888) − (8E) ensure that the
fixed point set �( 5 ) coincide with the consensus space

C= {
1 : 
 ∈ ℝ},

which will complete the proof. Condition (888) implies that the ori-
gin is a fixed point of map 5 (·), thus 5 (0) = 0. By plus-homogeneity
one derive that all consensus points are fixed points of map 5 (·),
as follows

5 (0 + 
1) = 5 (0) + 
1, ∀
 ∈ ℝ,
5 (
1) = 
1, ∀
 ∈ ℝ.

Therefore, the fixed point set of map 5 (·) contains all consensus
points, i.e., �( 5 ) ⊇ C. Following the same reasoning of the proof
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of Theorem 3.5.4, the log-exp transform 6 : int(ℝ=) → int(ℝ=) of
5 (·) given by 6 = exp ◦ 5 ◦ log for I ∈ int(ℝ=) is a type-K order-
preserving and homogeneous map. By condition (8E) and the
bĳective relation betweenℝ= and int(ℝ+) given by the exponential
and logarithmic functions, it follows that:

I �(6) ⊇ C+ = {
1 : 
 ∈ int(ℝ+)}, since �( 5 ) ⊆ C.
I G(6) has a globally reachable node, since G( 5 ) has a globally

reachable node.

By Lemma 4.2.3 the Jacobian matrix �6 of map 6(·) is stochastic at
the consensus points. By the definition of inference graph, it holds
that G(6) = G(�6(21)). Thus G(�6(21)) has a globally reachable
node by condition (8E) and is aperiodic because condition (88)
ensures a self-loop at each node. If there exists a fixed point
Ī ≠ 
1, then by Lemma 4.2.4 the Jacobian matrix � 5 (21) has a
unitary eigenvalue with multiplicity strictly greater than one. On
the other hand, it is well known (e.g., see Theorem 5.1 in [32])
that if G(�6(
1)) has a globally reachable node and is aperiodic
then �6(21) has a simple unitary eigenvalue with corresponding
eigenvector equal to 1, unique up to a scaling factor 2. This is a
contradiction, therefore it does not exist a fixed point Ī such that
Ī ≠ 
1. Therefore,

�(6) = C+ ⇔ �( 5 ) = C.

Summarizing, if conditions (0)-(1) are satisfied, then by Theo-
rem 4.2.2 the MAS converges to its set of fixed points �( 5 ). If also
(2) is satisfied, the �( 5 ) contains only consensus points and thus
the MAS in converges to a consensus state for all G ∈ ℝ=

+.

4.3 Application to epidemics over
networks

Propagation phenomena appear in numerous disciplines. One
of the approach in the analysis of propagation models is based
on the mean-field approximation of Markov-chain models and
algebraic graph theory. Themain assumption of thesemodels is the
knowledge of the local propagation parameters, which allows to
relate the dynamical behavior of the propagation process to some
global parameters of the network but without the need to know the
network itself. One of the main advantages of such an approach
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is that, by representing the network as an adjacency matrix, well-
established theorems in matrix analysis and dynamical systems
can be applied to the analysis of some sophisticated behavior of
the propagation processes. However, when the dynamics becomes
nonlinear, these results can not be employed and the analysis
become more complicated.

In this section the focus is on a specific epidemic propagation
model called the susceptible-infected-susceptible (SIS) model. The
population is assumed to be partitioned in several groups (e.g., the
sex, the age and so on) and consider the spread of the disease be
different between different groups. In particular, the discrete-time
network SIS model given in [8] is considered, which appears to
be the first to revisit and formally reproduce, for the discrete-time
case, the earlier results by Lajmanovich et al. [130]. The aim of this
section is to provide a convergence analysis of this model within
the theory developed in Chapters 3-4.

Most of the literature considers continuous approximations of
these models, due to their mathematical tractability. However, it is
clear that the system under consideration is intrinsically discrete
and a continuous approximation may lead to loss of information.
In fact, behavior of coherent discrete-time models is not as well-
behaved as their continuous approximations, due to eventual
periodic and chaotic behavior, which are absent in the continuous
models. Here the focus is on the discrete-time SIS model presented
in the recent work [233], which places a network twist [183] on the
earlier work [8].

The epidemic is assumed to propagate over a graph G= (+, �).
Nodes of � can be interpreted as homogeneous groups of indi-
viduals and edges can be interpreted as the connection between
different groups. Each group is subdivided according to suscepti-
ble and infectious. The state G8 ∈ [0, 1] of the 8-th group denotes
the portion of susceptible people in that group, while H8 = 1 − G8
denotes the portion of infected people. Individuals can be cured
and reinfected many times and there is not an immune group. The
dynamics of susceptible people G8 and of infected people H8 in
each group 8 ∈ + are given by

G8(: + 1) = G8(:)(1 − ℎ
∑
9∈N◦

8


8 9H 9(:)) + �8ℎH8(:) (4.14)

H8(: + 1) = H8(:)(1 − �8ℎ) + ℎG8(:)
∑
9∈N◦

8


8 9H 9(:) (4.15)

where 
8 9 denotes the infection rate between groups 8 and 9, �8
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Figure 4.1: Spread of an in-
fectious disease.

denotes the recovery rate of group 8, ℎ denotes the sampling time
and N◦

8
=N8 ∪ {8}. Assuming a suitable choice of the parameters

guaranteeing the boundedness of the solutions, there can exists
either a disease-free equilibrium or an endemic equilibrium. The
stability analysis of these equilibrium points is not trivial and
global results exists only for the disease-free equilibrium [8]. In
fact, the endemic equilibrium may be unstable, giving rise to
periodicity or chaos, as it is shown in the following example.

Let the population be divided into two groups, males G1 and
females G2, and consider the spread of a sexual disease. Letting
� = {
8 9}, three cases are considered:

1. Heterosexual contacts with � =
[
0 1
3 0

]
and ℎ = 0.2.

2. Bisexual contacts with � =
[
2 1
3 4

]
and ℎ = 0.4.

3. Homosexual contacts with � =
[
2 0
0 4

]
and ℎ = 1.1.

In all these cases the recovery rate for both population is taken
equal to �8 = 1.5 for any 8 ∈ {1, 2}, and the initial condition is taken
equal to H1 = 0.2. and H2 = 0.8. According to [8], the choice of the
parameters ensures the boundedness of the solutions. In Figure 4.1
the state evolution of the system in these three cases showing
the emergence of periodicity and chaos are given. In particular,
bisexual contacts give the periodic evolution in the top figure,
heterosexual contacts give the stable evolution toward an endemic
equilibrium in themiddle figure andhomosexual contacts gives the
chaotic evolution (for males) and stable evolution toward a disease-
free situation (for females) in the bottom figure. The dynamics of
the discrete-time SIS epidemic on complex networks is complicated
under the effects the infection rates 
8 9 , the recovery rates �8 , and
the time step-size ℎ. Comparing the discrete SIS model on complex
networks with the continuous counterpart, one notice that if '0,
the endemic equilibrium is stable for the continuous model while
may be unstable (or even chaotic) for the discrete model. This
confirms that the discrete model on complex networks has more
complex dynamical behaviors than the continuous counterpart.

In the next theorem sufficient conditions on the model (4.14)-
(4.15) are given ensuring convergence to an equilibrium, either
disease free or endemic, while preventing periodic and chaotic
behaviors.
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Theorem 4.3.1 Consider the discrete-time SIS network model with =
groups with dynamics as in (4.14)-(4.15). If the following conditions
on the network parameters is satisfied

ℎ
∑
9∈N◦

8


8 9 < 1 − ℎ�8 , 8 = 1, . . . , =. (4.16)

then each equilibrium of the system (either disease free or endemic)
is stable and no periodic or chaotic trajectories exist, for any initial
condition G ∈ [0, 1]= .

Proof. The proof consists in showing that the system of infected
people, rewritten as

H8(: + 1) = 58(H(:)) = H8(:)(1 − �8ℎ) + ℎ(1 − H8(:))
∑
9∈N◦

8


8 9H 9(:)

satisfies conditions (8) − (88) of Theorem 4.2.1. Condition (8) of
Theorem4.2.1 is satisfied, i.e., the system is type-Korder-preserving
if the following holds

ℎ
∑
9∈N◦

8


8 9 < 1 − ℎ�8 , (4.17)

in fact one can compute

%

%H8
58 = 1 − �8ℎ − ℎ

∑
9∈N8


8 9H 9(:) + ℎ
88 − 2ℎ
88H8(:)

≥ 1 − �8ℎ − ℎ
∑
9∈N8


8 9 − ℎ
88

≥ 1 − �8ℎ − ℎ
∑
9∈N◦

8


8 9 > 0

%

%H 9
58 = ℎ(1 − H8(:))
8 9 ≥ 0.

It is easy to derive that if (4.17) is satisfied, then solutions G(:) and
H(:) of the system (4.15) remains enclosed in [0, 1]= (cfr, Lemma 3
in [8]). Condition (88) of Theorem 4.2.1 is always satisfied, i.e., the
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system is subhomogeneous, in fact one can compute


 58(H) ≤ 58(
H)

ℎ(1 − H8(:))

∑
9∈N◦

8


8 9H 9(:) ≤ ℎ(1 − 
H8(:))
∑
9∈N◦

8


8 9
H 9(:)


ℎ(1 − H8(:))
∑
9∈N◦

8


8 9H 9(:) ≤ 
ℎ(1 − 
H8(:))
∑
9∈N◦

8


8 9H 9(:)

−
ℎ(H8(:))
∑
9∈N◦

8


8 9H 9(:) ≤ −
2ℎ(H8(:))
∑
9∈N◦

8


8 9H 9(:)

−
 ≤ −
2

1 ≥ 
.

It can be verified that the disease-free equilibrium H̄ = 0 is always
an equilibrium point of the system. Let us now consider the
translated system I8(:) = H8(:) + 2 with 2 ∈ ℝ+, i.e., I(: + 1) =
58(I8(:) − 2) + 2. It is clear that the point Ī = 21 is a positive
equilibrium point of the translated system and that conditions
(8)-(88) of Theorem 4.2.1 still hold under condition in eq. (4.17).
Thus, we conclude that the MAS converges to an equilibrium point
for all G ∈ [0, 1]= , completing the proof.

The condition provided in the above theorem is only sufficient and
not necessary. Let us discuss the examples given before in the light
of our theorem:

1. Simulation for heterosexual contacts with � =

[
0 1
3 0

]
and

ℎ = 0.2 is shown at the top of Figure 4.1. Condition (4.16)
is verified since ℎ(
11 + 
12) = 0.2 and ℎ(
21 + 
22) = 0.6
which are both strictly lesser than 1 − ℎ�1 = 1 − ℎ�2 = 0.7.
Thus, periodic and chaotic trajectories are avoided and the
system converges to an equilibrium which is endemic due to
the the particular choice of the initial state.

2. Simulation for bisexual contactswith� =
[
2 1
3 4

]
and ℎ = 0.4

is shown in the middle of Figure 4.1. Condition (4.16) is not
verified since ℎ(
11+
12) = ℎ(
21+
22) = 2which is greater
than 1 − �8ℎ. In fact, it is the case that the system shows a
periodic behavior.

3. Simulation for homosexual contacts with � =

[
2 0
0 4

]
and

ℎ = 1.1 is shown in the bottom of Figure 4.1. Condition (4.16)
is not verified since ℎ(
11 + 
12) = 0.5ℎ(
21 + 
22) = 2.2
which is grater than 1 − �8ℎ. In fact, it is the case that the
system shows a chaotic behavior.
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Figure 4.3:Evolutionof the
system with parameters:
ℎ = 
8 9 = �8 = 0.5 for all 8
and 9 ∈ N8 .

As a final example, we simulate the spread of an epidemic in a
network of 8 groups connected according to the graph G1 depicted
in Fig. 4.2. The infection rates are chosen all equal to 
8 9 = 1
for 8 , 9 ∈ + , the recovery rates are chosen all equal �8 = 1.5 for
8 ∈ + and the sampling time is chosen equal to ℎ = 0.2; the
choice of the parameters satisfies Theorem 4.3.1. Simulations with
a random initial condition is given in Fig.4.3. It can be seen the
system asymptotically reaches a steady state, which is an endemic
equilibrium.

4.4 Application to max-consensus

In this section a novel protocol is presented to solve the max-
consensus problem inMASs, i.e., the problem of steering all agents
to the maximum value among all initial agents’ states. The aim of
this section is to provide a convergence analysis of this protocol
within the theory developed in Chapters 3-4. This result is given
in the next theorem.

Theorem 4.4.1 Consider = agents evolving according to

G8(: + 1) = 58(G(:)) = G8(:) + ℎ8
∑
9∈N8

(
3 98(:) + |3 98(:)|

)
, (4.18)

with 3 98 = G 9(:) − G8(:) and a graph Gwith a globally reachable node.
If

ℎ8 <
1

2|N8 |
∀8 ∈ +, (4.19)

then, for any initial state G(0) ∈ ℝ=
+, theMAS asymptotically converges

to the maximum initial state, i.e.,

lim
:→∞

G8(:) = max
9∈+

G 9(0).

Proof. The proof consists in showing that the system satisfies
conditions (8)−(8E) of Theorem 4.2.5, thus proving its convergence
to a consensus state, and then proving that such a consensus state
corresponds to the maximum among all the initial agents’ state.
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Figure 4.5:Evolutionof the
system with parameters:
ℎ8 = 0.1.

Condition (8) of Theorem 4.2.5 is analyzed as follows

% 58
%G8

= 1 + ℎ8

[
−|N8 | −

∑
9∈N8

sign(G 9(:) − G8(:))
]

≥ −2|N8 |ℎ8 if G 9(:) > G8(:),∀9 ∈ N8
> 0,

and

% 58
%G 9

= 0 + ℎ8
[
1 + sign(G 9(:) − G8(:))

]
≥ ℎ8 [1 − 1] if G 9(:) < G8(:)∀9 ∈ N8
≥ 0 .

Thus, condition (8) holds if and only if (4.19) holds. Condition
(88) of Theorem 4.2.5 holds for any G ∈ ℝ=

≥0. This follows from
the fact that the only nonlinear term of 58 is | · | for which it
holds |
G | = 
 |G |. Therefore, 
 58(G) = 58(
G), which implies sub-
homogeneity. Condition (888) of Theorem 4.2.5 is satisfied since
Ḡ = 21 with 2 > 0 is a positive fixed point. Condition (8E) of
Theorem 4.2.5 is satisfied since the graph is assumed to contain a
globally reachable node.

Thus, if (4.19) holds, then all conditions of Theorem 4.2.5 are
satisfied, and one concludes that the MAS in (4.18) converges to a
consensus state.

It is straightforward to show that the consensus state reached by
a MAS in (4.18) is exactly the maximum among the initial states
of all agents. In fact, without loss of generality, suppose that node
1 has the maximum value, i.e., G1 ≥ G8 for all 8 ∈ + . In this case,
G1(: + 1) = G1(:), since the second term in (4.18) is 0. Since agent 8
keeps its value for all : ≥ 0, it is clear that the MAS in (4.18)
reaches consensus on the maximum value among all initial states,
completing the proof.

Fig.4.5 shows the evolution of a MAS with = = 6 agents connected
according to the graph G2 depicted in Fig. 4.4. The choice of the
parameter ℎ = 0.1 for 9 ∈ N8 and 8 ∈ {1, 2} satisfies Theorem 4.4.1.
Thus, the system asymptotically converges to themaximum among
the initial state of the agents.



Stability and consensus of
continuous-time MASs 5

In this chapter MASs in which the agents are single continuous-
time integrators are considered. The dynamics of each agent is
described by

¤G8(C) = 58(G8(C), G 9(C) : 9 ∈ N8). (5.1)

where G8(C) ∈ ℝ represents the state of the 8-th agent at time C.
Denoting G = [G1, · · · , G=]ᵀ the state of theMAS, with = ∈ ℕ being
the number of the agents, the global dynamics is written as

¤G(C) = 5 (G(C)). (5.2)

In a continuous-time framework, the properties of order-preserva-
tion and homogeneity discussed at length in the previous chapters,
translate into monotonicity and translation invariance. These proper-
ties regard the flow generated by a vector field and not anymore the
sequence of points generated by a map. The focus of this chapter
is on the following class:

I Type-K monotone and translation invariant flows in ℝ= .

In Section 5.1 the relative literature is reviewed along with a
self-contained and coherent definition of these systems and their
properties. The first main contribution of this chapter is the con-
vergence analysis of trajectories generated by this class of systems
by means of the previous results given in Section 3.5, thus ex-
ploiting nonlinear Perron-Frobenius Theory. The related literature
and a self-contained and coherent definition of these properties
is provided in Section 5.1. The second main contribution is the
application of this new mathematical tool to the analysis of the
stability and convergence to consensus of MASs. More precisely:

I Sufficient conditions on the local interaction rule of a generic
agent are proposed (such a rule can be potentially different
for each agent, i.e., heterogeneous) which guarantees that
the system falls into the considered class and is stable if an
equilibrium point exists;

I Sufficient conditions linking the topology of the network
and the structure of the local interaction rules are proposed,
which guarantees the achievement of a consensus state.
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5.1 Monotone and translation invariant
systems

Nonlinear Perron–Frobenius theory is related to monotone dy-
namical systems theory. In the theory of monotone dynamical
systems, emphasis is placed on continuous-time systems being
strongly monotone. Pioneering work in this field was done by
Hirsch [105] who first showed that if solutions of continuous-time
strongly monotone dynamical systems exist and are bounded,
then they converge to the set of equilibrium points. An extensive
overview of these results was given by Hirsch and Smith [102–
104, 106, 210]. Remarkably, under suitable additional assumptions,
generic convergence to equilibria can be made global, as in the
case of unique equilibrium point [210]. If, however, one relax the
strong assumption and only assumes the dynamical system to
be monotone, most of the theory is not applicable. In contrast, in
nonlinear Perron–Frobenius theory one usually considers discrete-
time dynamical systems that are only monotone, but satisfy an
additional assumption, such as the various version of homogeneity
introduced in Chapter 3.

Anumber of paper focusedonmonotonedynamical systemswhose
vector field possess the property of homogeneity. As in Chapter 4
the dynamics of these systems is usually restricted to the positive
orthantℝ=

+. Pivotal in the analysis of monotone and homogeneous
systems were the extenstions to the nonlinear case of the Perron-
Frobenius Theorem [3, 91], which allowed to prove that the vector
field on an invariant ray determines the stability properties of the
zero solution with respect to initial conditions. Further results in
this area include d-stability analysis [149], delay-independency [30].
Generalizations of these results to subhomogeneous vector fields
can be found in [29, 73, 251].

In the context of continuous-time systems, the property of plus-
homogeneity is known as the property of translation invariance
of the solutions. Angeli and Sontag in a series of recent works
studied monotone systems from a control perspective [10], their
interconnection [11] and multi-stability [12] properties, and pos-
sessing a translation invariant property [13, 14]. In particular, in [14]
it has been shown that a strongly monotone and translation invari-
ant system with a non-empty set of equilibria, always converges
to one of its equilbrium points. This result was generalized to
monotone system, getting rid of the strong assumption, by Hu
and Jiang [108]. This methodology has far-reaching implications,
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but so far has not received much attention in the literature. In
this chapter these results are applied to the analysis of MASs. In
particular, conditions on the local interaction rule of an agent are
identified in order to ensure that the MAS possesses the above
discussed properties, thus ensuring its stability and convergence
to consensus as a special case when an additional graph theoretical
condition is satisfied.

In the following, the theoretical background about monotone and
translation invariant system is provided. This class of system is
the continuous-time counterpart of order-preserving and plus-
homogeneous systems previously introduced in Chapter 3.

Monotonicity

Let 5 : ℝ= → ℝ= be a vector field.A solution of a dynamical system
(5.1) is denoted as !(C , G0), where G0 ∈ ℝ= denotes the initial
condition. Monotonicity is a property of the solutions generated by
the vector field, requiring that two solutions starting from ordered
initial conditions maintain the order over time. Next this property
is formalized.

Definition 5.1.1 A dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is said to be

I monotone if ∀G, H ∈ ℝ= its solutions !(·) satisfy

G ≤ H ⇒ !(C , G) ≤ !(C , H).

I strictly monotone if ∀G, H ∈ ℝ= its solutions !(·) satisfy

G � H ⇒ !(C , G) � !(C , H).

I strongly monotone if ∀G, H ∈ ℝ= its solutions !(·) satisfy

G � H ⇒ !(C , G) < !(C , H).

In addition to these notions of monotonicity, a new notion is
introduced that is in between strict and strong monotonicity. This
property is denoted as as type-K monotonicity.

Definition 5.1.2 A dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is said to be type-K monotone if ∀G, H ∈ ℝ= and G � H

its solutions !(·) satisfy
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(8) G8 = H8 ⇒ !8(C , G) ≤ !8(C , H) ,
(88) G8 < H8 ⇒ !8(C , G) < !8(C , H) ,

for all 8 = 1, . . . , =, where !8 is the 8-th component of !.

We remark that the property of monotonicity and its derivations
are are the natural counterpart on continuous-time systems of the
equivalent property of order-preservation for discrete-time system,
presented in Definitions 3.2.2-3.2.3. Usually, to verify monotonicity
is not an easy task. For differentiable continuous-time dynamical
systems a sufficient condition to ensure monotonicity is the well-
known Kamke condition [113, 211]. In the following proposition the
result of Kamke condition is generalized by proving that it implies
type-K monotonicity and not only monotonicity.

Proposition 5.1.1 The dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is type-K monotone if and only if its Jacobian matrix is
Metzler, i.e., if

% 58/%G 9 > 0 for 8 ≠ 9 . (5.3)

Proof. Consider two initial conditions H(0), I(0) ∈ ℝ= and the
corresponding solutions !(C , H(0)) and !(C , I(0)) for C ≥ 0. Let us
denote � ⊂ {1, . . . , =}. Type-K monotonicity requires that if

H8(0) = I8(0) 8 ∈ �
H8(0) < I8(0) otherwise

then

!8(C , H(0)) ≤ !8(C , I(0)) 8 ∈ � (5.4)
!8(C , H(0)) < !8(C , I(0)) otherwise. (5.5)

Let us introduce the one (positive) parameter family of differential
equations

¤G(C) = 6(G(C)) − 1
=
E, E ∈ int(ℝ=

+), = ≥ 0

with the initial condition G(0) = I(0) − 1
=E. The solution of this

system satisfying the initial condition is denoted by )(C , G(0)).
Function )(·) is a solution of the differential inequality ¤G(C) <
6(G(C)) and G(0) < I(0), thus )(C , G(0)) < !(C , I(0)), cfr Theorem
8 in [43]. Because of the continuous dependence on initial values
and parameters, it follows that )(C , G(0)) → !(C , H(0)) as = →∞.
Hence,

!(C , H(0)) ≤ !(C , I(0)), C ≥ 0. (5.6)
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Now it is of interest examining under what conditions it may
happen that !8(C∗, H(0)) = !8(C∗, I(0)) for C∗ > 0. Let Ĝ ∈ ℝ=−1

denote the vector formed by the coordinates of G other than G8 ,
then

¤G8(C) = 68(G(C)) = 68(Ĝ(C), G8(C)) = �8(C , G8).

Solutions to this equation aredenotedby !̃ and satisfy !̃8(�, H(0)) =
!8(C , H(0)) and !̃8(�, I(0)) = !8(C , I(0)). At the time �∗ = −C∗ it
holds !̃8(�∗, H(0)) = !8(�∗, I(0)) and thus, by following the same
reasoning of before, one conclude that for � ∈ [−C∗, 0] or equiva-
lently C ∈ [0, C∗] it holds

!̃8(�, H(0)) ≥ !̃8(�, I(0)) ⇒ !8(C , H(0)) ≥ !8(C , I(0)).

Since condition (5.4) must hold, then !8(C∗, H(0)) = !8(C∗, I(0))
implies that!8(C , H(0)) = !8(C , I(0)) for any C ∈ [0, C∗] and therefore
H8(0) = I8(0), formally

!8(C , H(0)) = !8(C , I(0)), ⇒ H8(0) = I8(0). (5.7)

The combination of conditions (5.6) and (5.7), completes the suf-
ficiency part of the proof, i.e., “condition (5.3)→ type-K mono-
tonicity". On the other hand, it holds that “type-K monotonicity
⇒monotonicity" and “condition (5.3)⇔monotonicity" as it has
been shown in [174, 210]. Therefore, “condition (5.3)⇔ type-K
monotonicity", completing the proof.

Translation invariance

The property of translation invariance is now introduced. This is
the continuous-time counterpart of plus-homogeneity for discrete-
time systems, , presented in Definition 3.3.2.

Definition 5.1.3 A dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is said to be translation invariant if its solutions satisfy

!(C , G + 
1) = !(C , G) + 
1, ∀C ≥ 0

for all G ∈ ℝ= and 
 ∈ ℝ.

A main feature of type-K monotone systems possessing also trans-
lation invariance property is that of being non-expansive under
the sup-norm defined.
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Definition 5.1.4 A dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is said to be non-expansive with respect to a metric
3 : ℝ= ×ℝ= → ℝ≥0 if its solutions !(·) satisfy

3(!(C , G), !(C , H)) ≤ 3(G, H), ∀C ≥ 0

for all initial conditions G, H ∈ ℝ= and C ≥ 0.

Proposition 5.1.2 If a dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= is type-K monotone and translation invariant then it is
non-expansive with respect to the sup-norm.

Proof. Consider any initial conditions H, I ∈ ℝ= and solutions
!(C , H), !(C , I). For any time C, the map ℎC(G) = !(C , G) is type-K
order preserving and plus-homogeneous since the system is as-
sumed to be type-Kmonotone and translation invariant. Therefore,
by Proposition 3.4.2, it holds����ℎC(G) − ℎC(H)����∞ ≤ ����G − H����∞, ∀C ≥ 0,

completing the proof.

5.2 Stability and consensus analysis

Before establishing the main results of this section, we recall the
definition of inference graph given in Chapter 4.

Definition 5.2.1 Given a differentiable map 5 : - → - with
- ⊆ ℝ= , its inference graph G( 5 ) = (+, �) has a set of = nodes
+ = {1, . . . , =} and a set of directed edges � ⊆ + × + . An edge
(8 , 9) ∈ � from node 8 to node 9 exists if

%

%G 9
58(G) ≠ 0, ∀G ∈ - \ (,

where ( is a set of measure zero in -.

The next theorem provides an alternative proof of the convergence
of trajectories generated by type-K monotone and translation
invariant systems of systems, which was originally established
in [108]. The proof is carried out by means of the result given
in Section 3.5 and thus exploiting nonlinear Perron-Frobenius
Theory.
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Theorem 5.2.1 Let a dynamical system ¤G(C) = 5 (G(C)) with
5 : ℝ= → ℝ= be type-K monotone and translation invariant. If 5 (·)
has at least one equilibrium point, then it holds that

lim
C→∞

!(C , G0) = Ḡ , ∀G0 ∈ ℝ=

where Ḡ is an equilibrium point of the system.

Proof. Consider C = :)with thediscrete time index : ∈ {0, 1, 2, . . .}
and consider the iterative sequence of points generated by the
discrete-time system [154]

Ĝ(: + 1) = 6(G(:)) = !(), Ĝ(:)), ∀G ∈ ℝ= , (5.8)

for any ) ∈ ℝ and let the initial condition be Ĝ(0) = G(0). It
is clear that the trajectory T(G, 6) is entirely contained in the
trajectory T(G, 5 ). Therefore, one conclude that one can study
trajectories of the continuous-time system by equivalently studying
the trajectories of the discrete-time system (5.8), in fact

lim
:→∞

6:(G) ≡ lim
C→∞

!(C , G), ∀G ∈ ℝ.

The continuous-time system is assumed to be type-Kmonotone and
translation invariant. Due to type-K monotonicity, solutions !(·)
are type-K order-preserving maps. Due to translation invariance,
solutions !(·) are plus-homogeneous maps. Therefore, map 6(·)
is type-K order-preserving and plus-homogeneous and so is the
discrete-time system (5.8).

It is shown now that equilibrium points of vector field 5 (·) are fixed
points of map 6(·). Consider an equilibrium point G4 of 5 (·), i.e.,
5 (G4) = 0, then solutions !(C , G4) starting at G4 remains in Ḡ for all
C ≥ 0, and thus G4 is a fixed point for map 6(·).By Theorem 3.5.4 all
periodic points of 6(·) are fixed points, thus all periodic trajectories
of 6(·) are equilibrium points i.e.,

lim
:→∞

6:(G) = Ḡ ⇔ lim
C→∞

!(C , G) = Ḡ , ∀G ∈ ℝ=

where Ḡ is a fixed point of 6(·) or equivalently an equilibrium
point of 5 (·). In other words, if one would assume the existence
of a periodic trajectory of vector field 5 (·), this would imply a
periodic point of map 6(·), which contradicts Theorem 3.5.4. This
completes the proof.

In the next theorem, sufficient conditions on the structure of the
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local interaction rules of a discrete-time MAS as in (5.1) so that
the vector field is type-K monotone and translation invariant, thus
falling within the class of systems considered in Theorem 5.2.1 and
ensuring the stability of the MAS for any initial condition in ℝ= .

Theorem 5.2.2 Consider = agents evolving according to

¤G8(C) = 58(G8(C), G 9(C) : 9 ∈ N8).

If the MAS has at least one equilibrium point and if the set of differen-
tiable local interaction rules 58 : ℝ= → ℝ, with 8 = 1, . . . , =, satisfies
the two conditions:

(8) % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 58(G + 
1) = 58(G) for any 
 ∈ ℝ;

then the MAS converges to one of its equilibrium points for any initial
state G(0) ∈ ℝ= .

Proof. If condition (8) is verified for any 8 = 1, . . . , =, then the
system is type-K monotone according to Proposition 5.1.1. We now
show that if condition (88) is verified for any 8 = 1, . . . , =, then the
system is translation invariant according to Definition 5.1.3. This
can be easily proved by noticing that condition (88) implies that
the vector field 5 (·) is the same when computed at G and G + 
1
for any G ∈ ℝ= , thus, trajectories starting at these points are the
same but shifted of 
1, i.e.,

!(C , G + 
1) = !(C , G) + 
1, ∀C ≥ 0.

Since the system 5 (·) is a type-Kmonotone and translation invariant
and it has at least one equilibrium point by the translation invariant
property, one can exploits the result in Theorem 5.2.1 to establish
that for any initial condition G(0) ∈ ℝ= , the state trajectories of the
MAS converge to one of its equilibrium points.

As a special case, the consensus problem is studied. Two additional
sufficient conditions are given. The first condition ensures that
the consensus state is an equilibrium manifold for the MAS. The
second condition is based on the inference graph G( 5 ); it requires
that there must exists a globally reachable node in graph G( 5 )
and it implies that the consensus state manifold becomes globally
asymptotically stable for theMAS. These two conditions applied to
MASs as in eq. 4.1 satisfying conditions of Theorem 5.2.2 guarantee
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that the MAS asymptotically reaches the consensus state, as shown
in the next theorem.

Theorem 5.2.3 Consider = agents evolving according to

¤G8(C) = 58(G8(C), G 9(C) : 9 ∈ N8).

If the set of differentiable local interaction rules 58 : ℝ= → ℝ, with
8 = 1, . . . , =, satisfies the next conditions:

(8) % 58/%G 9 ≥ 0 for 8 ≠ 9;
(88) 58(G + 
1) = 58(G) for any 
 ∈ ℝ;
(888) 58(0) = 0;
(8E) Inference graph G( 5 ) has a globally reachable node;

then, the MAS converges asymptotically to a consensus state for any
initial state G(0) ∈ ℝ= .

Proof. Following the same reasoning of the proof of Theorem 5.2.2
[154], one can study the trajectories of the continuous-time system
by equivalently studying the trajectories of the discrete-time system

Ĝ(: + 1) = 6(G(:)) = !(), Ĝ(:)), ∀G ∈ ℝ= , (5.9)

for any ) ∈ ℝ, in fact

lim
:→∞

6:(G) ≡ lim
C→∞

!(C , G), ∀G ∈ ℝ.

Conditions (8) and (88) imply that the continuous-time system is
type-K monotone and translation invariant. Thus, due to type-K
monotonicity, solutions !(·) are type-K order-preserving maps.
Due to translation invariance, solutions!(·) are plus-homogeneous
maps. Therefore, map 6(·) is type-K order-preserving and plus-
homogeneous and so is the discrete-time system (5.16). Further-
more, it is straightforward to notice that condition (888) implies that
5 (0) = 0 and condition (8E) implies that G( 5 ) contains a globally
reachable nodes.

Let us denote the consensus space as C= {
1 : 
 ∈ ℝ}. Since all
conditions of Theorem 4.2.6 are satisfied, it follows that for all
G ∈ ℝ= it holds

lim
:→∞

6:(G) ∈ C,

and thus the MAS converges asymptotically to a consensus state,
completing the proof.
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Two general families

In this section two families of nonlinear control protocols are
considered,

¤G8(C) = 58(G(C)) = ℎ8

(∑
9∈N8
(G 9(C) − G8(C))

)
, (5.10)

¤G8(C) = 58(G(C)) =
∑
9∈N8

ℎ8
(
G 9(C) − G8(C)

)
, (5.11)

where ℎ8 : ℝ→ ℝ. It is clear that if ℎ8(G) = G for all 8, both laws
define the classical linear consensus protocol. Thus, the linear
protocol is a special case of these two families. The key feature of
these two families is that they satisfy the property of translation
invariance by construction.

Theorem 5.2.4 Consider = agents evolving according to protocol
(5.10) or protocol (5.11). If the MAS has at least one equilibrium point
and if the set of differentiable local interaction rules ℎ8 : ℝ→ ℝ, with
8 = 1, . . . , =, satisfies the next condition:

(8) 3ℎ8/%G ≥ 0 for 8 ≠ 9;

then the MAS converges to one of its equilibrium points for any initial
state G(0) ∈ ℝ= .

Proof. Theproof is a straightforward consequence of Theorem5.2.2.

Theorem5.2.5 Consider = agents evolving inℝ according to protocol
(5.10) or protocol (5.11). If the set of differentiable local interaction rules
ℎ8 : ℝ→ ℝ, with 8 = 1, . . . , =, satisfies the next conditions:

(8) %ℎ8/%G ≥ 0 for 8 ≠ 9;
(88) ℎ8(0) = 0;
(888) Inference graph G( 5 ) has a globally reachable node;

then, the MAS converges asymptotically to a consensus state for any
initial state G(0) ∈ ℝ= .

Proof. Theproof is a straightforward consequence of Theorem5.2.3.

These theorems extend results in [162, 237] to more general non-
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linear functions ℎ8(·). In particular, in [162] the family in (5.11) is
considered but the nonlinear coupling ℎ8(·) is assumed to satisfy
a passivity condition. On the other hand, in [237] the family in
(5.10) is considered but the nonlinear coupling 58(·) is assumed to
be strictly increasing and odd.

Both protocols can find their applications. Protocol in (5.11) can be
utilized to analyze the synchronization of phase oscillators, while
protocol in (5.10) can accommodate the saturation of control input
by letting 58(·) = sat(·) regardless of the number of agents. These
two are indeed the main applications presented in next sections.

5.3 Application to consensus with
bounded control input

The most common consensus algorithms for continuous-time
MASs ¤G8(C) = D8 is given by the following control input

D8 =
∑
9∈N8

(
G 9 − G8

)
.

The problem to be studied here is to design proper saturating
functions such that the above consensus protocol is yet qualifiable,
when the inputs of all agents are subject to a saturation constraint

−B8 ≤ D8 ≤ B8

where B8 ∈ ℝ+ is a known positive scalar representing the con-
straint on the input amplitude. We consider the following generic
saturating function sat8 : ℝ→ [−B8 , B8],

sat8(G) = B8
(
1 − 4−<G
1 + 4−<G

)
, (5.12)

which encompasses several well-known saturating function, no-
tably:

I sat8(G) = tanh(G) if B8 = 1 and < = 2;
I sat8(G) = sign(G) if B8 = 1 and < →∞;

It can be verified that a MAS wherein the agents are subject to one
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Figure 5.1: Evolution of a
network of 5 agents in a
directed line configuration.
In the top figure the in-
put is not saturated; in the
middle and bottom figure
the input is saturated ac-
cording to (5.12) with < =

2 and < = 1000, respec-
tively.

of the following saturated control action

D8 =
∑
9∈N8

sat8
(
G 9(C) − G8(C)

)
,

D8 = sat8

(∑
9∈N8

(
G 9(C) − G8(C)

))
.

(5.13)

achieve consensus if the underlying graph contains a globally
reachable node. This is due to Theorem 5.2.5, in fact: conditions
(8) and (88) hold due to the following properties of the saturating
function,

sat8(0) = 0,
%

%G
sat8 ≥ 0,

and condition (888) is satisfied by assumption.

In the following we provide some numerical simulations in a
network of 5 nodes with a directed line configuration. We consider
the case in which saturation is applied to the sum of the inputs
with saturation bound B8 = 1 for all agents. The dynamics of the
considered network takes the form

¤G(C) = −sat(!G(C)),

and Figure 5.1 shows some simulations for C = �:. In the top figure,
the evolution of the system without the saturation of the inputs is
provided. Then, in themiddle figure, the saturation is applied with
< = 2, thus resulting in the hyperbolic tangent sat(G) = tanh(G).
Notice that the the saturation of the inputs entails a slowdown of
the convergence rate. Finally, in the bottom figure the saturation is
applied with an high value of < = 1000, thus well approximating
the sign function sat(G) ≈ sign(G). It can be founded that, owing to
the saturation, the state of the agents starts varying with a constant
rate B8 = 1, instead of an exponential rate in the case without
saturation, which is recovered when the agents get close enough
and the saturation does not take place anymore. Further, it can be
concluded that when < → ∞ the consensus will be achieved in
finite time and the control law can be regarded as a discontinuous
control law.
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5.4 Application to synchronization of
phase-coupled oscillators

The emergence of synchronization in a network of coupled oscilla-
tors is a fascinating subject of multidisciplinary research.Within
the rich modeling phenomenology on synchronization among cou-
pled oscillators, this section focuses on diffusively coupled phase
oscillators. A single uncoupled phase oscillator is characterized
by a phase �8(C) that evolves on the circle with constant velocity
¤�8(C) = $8 , where $8 is the natural frequency of the oscillator.
Within the network, = phase oscillators are coupled through their
phase differences according to a graph Gand coupling functions
ℎ8 9 . The dynamics of each oscillator is given by

¤�8(C) = $8 +
∑
9∈N8

ℎ8 9(�9(C) − �8(C)). (5.14)

Weakly-coupled identical limit-cycle oscillators can be well approx-
imated by this canonical model through a phase reduction and
averaging analysis, with appropriate coupling functions ℎ8 9 that
are closely related to the phase response curve of the oscillators.
Since the phase response curve is a function computed on the peri-
odic limit cycle, it is 2�-periodic and so are the coupling functions
ℎ8 9 .

We provide a new analysis tool for studying synchronization
in networks of identical oscillators, $8 = $, with directed and
heterogeneous couplings satisfying the following condition,

3

3�
ℎ8 9(�) =

{
> 0 � ∈ (−
, 
)
< 0 � ∈ (−�,−
, 
,�)

, (5.15)

with 
 ∈ [0,�] and ℎ8 9(0) = 0: Figure 5.2 provides a graphical
representation of this condition.

Let 0, 1 be any real numbers such that 0 ≤ 1 − 0 ≤ 2
 and define
� = [0, 1]= ⊂ ℝ= . It can be checked that� is an invariant space for
the system and all conditions of Theorem 5.2.3 are satisfied if the
graph is assumed to contain a globally reachable node. Therefore,
for any initial condition �(0) ∈ � the oscillators reach consensus,
i.e., phase synchronization.

Moreover, the following theorem shows that it is always possible
to design 
 such that the phase synchronized state is the unique



5 Stability and consensus of continuous-time MASs 75

0 10 20 30
−π

−π
2

0

π
2

π

Time t

θi(t)

0 5 10 15
−π

−π
2

0

π
2

π

Time t

0 5 10 15
−π

−π
2

0

π
2

π

Time t

Figure 5.3: Evolution of a
network of 10 oscillators in
a directed circle configura-
tion. The coupling function
are designed with 
 = �/2
(top figure), 
 = �/6 (mid-
dle figure) and 
 ≈ 0 (bot-
tom figure).
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linear oscillators’.

stable configuration of the network, thus providing global syn-
chronization for initial configuration in the whole torus. In fact, by
condition in eq. (5.15) it always holds that the synchronized state
is stable, and moreover 
 can always be chosen smaller enough to
make unstable all other equilibrium configurations.

Theorem 5.4.1 Consider a network of identical oscillators with dynam-
ics as in eq. (5.14). A configuration �∗ which constitutes an equilibrium
of the network is:

I stable if the Jacobian � 5 (�∗) is Metzler;
I unstable if the negative Jacobian −� 5 (�∗) is Metzler.

Proof. The proof is given in the next page.

The considered class of coupling functions encompasses several
oscillator models, for instance:

I Kuramoto oscillators with ℎ8 9(�) = sin(�) with 
 = �/2
[128].

I Monotone oscillators with 
 ∈ {0,�} and any strictly mono-
tone function ℎ(�) such that ℎ8 9(�) = ℎ(�) [150];

I Oscillators with symmetric and odd coupling [146, 147].

The synchronization results provided in this section, constitutes
an alternative proof to the result provided in [253] specialized
for Kuramoto oscillators coupled according to a fixed directed
graph with a globally reachable node and initial state confined
in the semicircle. Moreover, they provide an extension of the
result provided in [150] for monotone oscillators to the case of a
non-complete and directed graph with initial state in the whole
circle.

As an example, we provide in Figure 5.3 simulations of a network
of 10 oscillators coupled according to a directed circle graph.
The network has two phase configuration which constitute an
equilibrium, which are characterized by all phase differences
|�8+1 − �8 | being either equal to zero (i.e., the phase-synchronized
state �BH=) or equal to 
̄ = �/5 (i.e., the splay state �B?;0H). In the
top figure, Kuramoto oscillators are considered, for which it holds

 = �/2. Since 
 > 
̄, the Jacobianmatrix at the splay state�B?;0H is
Metzler and therefore it is a stable configuration. In fact, oscillators
starting close enough to this undesired equilibrium, converge
to it. In the middle figure, generic coupling functions satisfying
condition (5.15) is considered, with 
 = �/6. Since 
 < 
̄, the
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negative Jacobian matrix at the splay state �B?;0H is Metzler and
thus it is an unstable configuration. The only equilibrium point is
the synchronized state, and the network globally converge to it
for any initial configuration of the oscillators. In the bottom figure,
"almost" monotone oscillators are considered, i.e., the coupling
function common to all oscillator satisfying condition (5.15) is
selected with 
 ≈ 0 but 
 > 0. We highlight that the smaller
is the value of 
, and the higher is the rate of convergence to
the synchronized state. In particular, as 
→ 0, synchronization
is reached in finite-time; this result is coherent with the results
provided in [150].

Proof of Theorem 5.4.1

Following the same reasoning of the proof of Theorem 5.2.2 [154],
one can study the trajectories of the continuous-time system by
equivalently studying the trajectories of the discrete-time system

�̂(: + 1) = 6(�(:)) = !(1, �̂(:)), ∀� ∈ ℝ= , (5.16)

in fact
lim
:→∞

6:(�(0)) ≡ lim
C→∞

!(C , �(0)), ∀G ∈ ℝ.

Let �∗ be an equilibrium point of the system, then it is a fixed point
of the discrete mapping 6(·) and by plus-homogeneity property
the points in the manifold �∗ + 21 with 2 ∈ ℝ are also fixed
points. Consider a neighborhood , delimited by 0 = �∗ − 21
and 0 = �∗ + 21 with 
 > 0, 
 ≈ 0, i.e., , = [0, 1], for which
0 ≤ �∗ ≤ 1. Then,

(8) if � 5 is Mezler, then 5 is monotone in, by Lemma 5.1.1 and
6 is monotone in, by Lemma 3.2.1. Thus, for any � ∈, , it
follows

0 = 6:(0) ≤ 6:(�) ≤ 6:(1) = 1, ∀: ≥ 0.

Therefore, 6:(,) ⊂ , , and the equilibrium point is stable.
(88) if −� 5 is Mezler, then by trivial generalization Lemmas 5.1.1-

3.2.1, 5 is antitone and so is 6, i.e., G ≤ H ⇒ 6(G) ≥ 6(H)
[134]. Thus, for any � ∈, , it follows

0 = 6(0) ≥ 6(�), or 6(�) ≥ 6(1) = 1.

Therefore, 6(,) ⊄, , and the equilibrium point is unstable.
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We highlight that only in
this chapter, and only for
the presentation of the
Fiedler vector estimation
protocol, we use H(C) to de-
note the state of the agents
instead of G(C). This choice
allows a coherent notation
with the desynchroniza-
tion protocol.

[38] Chung and Graham
(1997), Spectral graph theory.
[74] Fiedler (1973),
‘Algebraic connectivity of
graphs’.

Desynchronization via Fiedler
vector estimation 6

In this chapter we are mainly concerned with the problem of
inducing desynchronization in a network of diffusively coupled
harmonic oscillators with identical frequency $ ∈ ℝ,

¤G8(C) = �G8(C) + �D8(C)
H8(C) = �G8(C)

, � =

[
0 −$
$ 0

]
, � = �ᵀ =

[
0
1

]
,

in a distributed way by designing a local control feedback. The
basic idea underlying the design of the proposed local feedback
is to exploit the zero mean property of the Fiedler vector of the
Laplacianmatrix encoding the diffusive coupling amongoscillators
in order to induce desynchronization in the network. It turns out
that the proposed feedback constitutes a novel protocol to estimate
the Fiedler vector in network of single integrators

¤H8(C) = D8(C). (6.1)

For the sake of clarity, after having reviewed the related literature
in Section 6.1, we first present the protocol computing the Fiedler
eigenvector in Section 6.2. Second, in Section 6.3 we employ a
the proposed protocol as a local feedback law to desynchronize
a network of coupled harmonic oscillators by driving it toward
a state proportional to the Fiedler vector. Finally, in Section 6.4
numerical simulations corroborating the theoretical results are
provided.

6.1 Related literature

Fiedler vector estimation

The computation of eigenvectors of the graph Laplacian ! is a
problem of fundamental importance for various applications and
it is the cornerstone of spectral graph theory [38]. Among all
eigenvectors, the Fiedler vector [74] plays a pivotal role: it is the
eigenvector corresponding to the second smallest eigenvalue of
the Laplacian matrix, also known as the algebraic connectivity. To
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name a few, Fiedler vector is useful in graph partitioning [25, 97,
214] and in the control of algebraic connectivity [52, 241, 245].

Power Iteration (PI) [220] is an established iterative method to
compute the leading eigenvalue(s) and associated eigenvector(s)
of a matrix. In [26, 52, 63, 241, 244] the Fiedler vector is computed
by means of methods based on a distributed implementation of PI.
Main drawbacks of [52], which exploits the algorithm proposed in
[115], are the centralized initialization step and the high number
and size of the messages the nodes need to exchange. In [241]
and [63] the decentralization is carried on at each agent by two
consensus estimators, which are required to run "fast enough"
in order to expect the resulting dynamics to converge: a formal
proof is not provided. Similar approaches are used to compute
eigenvalues and the algebraic connectivity [178].Another algorithm
with application to topology inference in ad hoc network has been
proposed in [25, 26]. Another class of algorithms forces the nodes
to oscillate at eigenfrequencies and deduce spectral information
through Fast Forurier Transform (FFT). In [198] the Fiedler vector
is computed by running at every node the wave equation and
computing the eigenvector components through an FFT. This
algorithm is proved to be orders of magnitude faster than PI-based
algorithms. An FFT approach for distributedly computing the
eigenvalues is given in [83]. On one hand, the main limitation of
PI-based approaches consists on the distributed normalization of
the vectors at each step, which severely affects their convergence
speed and requires a centralized initialization step. On the other
hand, FFT-based approaches suffer from a rather poor accuracy
and robustness issues.

The protocol proposed in Section 6.2 relies neither on a distributed
PI nor a FFT approach, thus guaranteeing robustness to initial
conditions, high convergence speed and accuracy. However, it
requires the knowledge of the algebraic connectivity, which is
a reasonable assumption for static networks (as in the case of
our main application) since various distributed algorithms have
been proposed to distributedly estimate all the eigenvalues of
undirected graph Laplacian [83, 122, 219, 240].

Desynchronization of harmonic oscillators

Due to their theoretical and practical significance, networks of
harmonic oscillators have been experiencing growing attention
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and have been applied to address several problems electrical net-
works [223], in quantum electronics-mechanics-optics [28, 155,
247], resonance phenomena[208], motion coordination [21, 141]
and acoustic vibrations [252]. One of the pioneering works study-
ing synchronization in ensembles of harmonic oscillators is the
one of W. Ren [192]. The convergence conditions over directed
fixed networks are derived for harmonic oscillators with diffusive
coupling. The construction of a dynamic output feedback coupling
that achieves synchronization in uniformly connected networks is
due to [203], while the case of proximity networks, in which the
coupling depends on the relative distance between the oscillators,
has been addressed in [216]. These results have been extended
in [234] to deal with heterogeneous oscillators. Other topics of
interest include finite-time through output feedback [67, 249],
sampled-data coupling [231, 232, 246, 247], bipartite consensus
[140, 212].

While synchronization has been formally defined and thorougly
investigated for harmonic oscillators, a definition of desynchro-
nization is missing. Even for first order nonlinear oscillators, such
as Kuramoto oscillators, the definition of desynchronization is am-
biguous as it depends upon the metric used to measure the degree
of synchronization of a network and the underlying mathematical
model of the network system. Desynchronization has significance
in several fields. Some neuropathologies (e.g., epilepsy and Parkin-
son) are believed to be related to abnormal synchronization of
neurons; treatment of these neurological diseases is thus addressed
by means of desynchronization, and different oscillator models,
such as Kuramoto oscillators [84, 156, 157], impulse-coupled oscilla-
tors [187], Stuart-Landau oscillators [158, 180], FitzHugh-Nagumo
oscillators [2, 116, 189], Andronov-Hopf oscillators [181]. Desyn-
chronization is a useful primitive for periodic resource sharing
and applies to sensor network applications: it implies that nodes
perfectly interleave periodic events thus allowing to evenly dis-
tribute sampling burden in a group of nodes, schedule sleep cycles,
or organize a collision-free time division multiple access sched-
ule for transmitting wireless messages [44, 54, 153, 184]. Another
important problem is the motion coordination [15, 34, 90, 135].

The desynchronization measure proposed in Section 6.3 is the
first formulated for harmonic oscillators. On the basis of this
definition, we propose a local control protocol for the oscillators to
desynchronize in a connected undirected network.
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6.2 Proposed distributed protocol to
estimate the Fiedler vector

Consider a network of = single integrators

¤H8(C) = D8(C), ∀8 = 1, . . . , =, (6.2)

where H8 ∈ ℝ and D8 ∈ ℝ are, respectively, the state and the input
of agent 8. The network’s topology is represented by an undirected
graph G= (+, �) and the control law D8 is said to be local if each
agent can only exchange information with its neighbors. The goal
of this section to design a local control law such that each agent
8 estimates the 8-th Fiedler vector component of the Laplacian
matrix ! of G. For the sake of thoroughness, we first provide a
global control law from which a local version is derived in the next
subsection.

Theorem 6.2.1 Consider a MAS with agents dynamics (6.2) driven
by the control law

D8(C) =
∑
9∈N8

(
H 9(C) − H8(C)

)
− 
 1ᵀH(C) + �!,2H8(C). (6.3)

If G is connected and 
 > �!,2/= then the MAS converges to a state
proportional to the Fiedler vector of graph G.

Proof. The dynamics can be written in compact form as

¤H(C) = − [! + 
11ᵀ − �!,2�]︸                   ︷︷                   ︸
"

H(C),

Where ! denotes the Laplacian matrix as in Definition 2.2.1. For
an undirected graph Gwithout self-loops it is easy to derive that
! is a symmetric and positive semidefinite, i.e., all eigenvalues of
! are real and non-negative. In this case, by convention, we write
these eigenvalues as

0 = �!,1 ≤ �!,2 ≤ · · · ≤ �!,= .

To the eigenvalue�!,1 = 0 is associated the eigenvector E!,1 = 1 and
to the eigenvalue �!,2, which is known as the algebraic connectivity,
is associated the eigenvector E!,2, which is known as the Fiedler
vector. The construction of matrix " consists of two conceptual
steps.
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1. Matrix inflation: add a term 
11ᵀ to the Laplacian matrix
!, obtaining # = ! + 
11ᵀ. Note that matrix # has the
following properties:

I 1 is an eigenvector of # associated to the eigenvalue

=. To prove this, we have:

#1 = (! + 
11ᵀ)1 =��!1 + 
11ᵀ = 
=1.

I Anyother eigenvector E∗ of !with associated eigenvalue
�∗ is an eigenvector of # with the same associated
eigenvalue �∗. To prove this, we have:

#E∗ = (! + 
11ᵀ)E∗ = !E∗ +����

11ᵀE∗ = �∗E∗,

where the middle step follows from the fact that the
eigenvectors of a symmetric matrix are orthogonal.

It is straightforward to conclude that the smallest eigenvalue
of matrix # is �#,1 = �!,2 if 
 > �!,2/= and its associated
eigenvector is the Fiedler vector �#,1 = �!,2.

2. Eigenvalues shifting: subtract matrix �!,2� to the resulting
matrix, obtaining" = # −�!,2�. All eigenvalues are shifted
by�!,2 thus ensuring that�",1 = 0 is a single null eigenvalue
with associated eigenvector �#,1 = �!,2.

It follows that matrix" has spectrum

0 = �",1 < �",2 ≤ · · · ≤ �",=

with E",1 = E!,2 and �",1 = �!,2. Thus, the MAS is marginally sta-
ble and H converges asymptotically to the Fiedler vector, completing
the proof.

The control law (6.3) is not local as it relies on two global infor-
mation: the algebraic connectivity �2 and an average of the state
variables 1ᵀH(C). In this work we make the standing assumption
that the algebraic connectivity �2 is known. Such an assumption is
plausible for static networks since it can be inferred in a distributed
way by several algorithms [83, 122, 219, 240]. On the other hand,
the problem of computing in real time the average 1ᵀH(C) can be
overcome by employing a distributed estimator of this quantity, as
proposed in earlier work [85, 120, 202]. In particular, we consider
an integral dynamic consensus algorithm, which differs from those
presented in [120].
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Step 1: Derivation of a
closed form for the eigen-
values of".

Theorem 6.2.2 Consider a MAS with agents dynamics (6.2) driven
by the control law

D8(C) =
∑
9∈N8

(
H 9(C) − H8(C)

)
− 
E8(C) + �!,2H8(C). (6.4)

where E8(C) ∈ ℝ is given by

¤E8(C) = ¤H8(C) + �(H8(C) − E8(C)) +  �
∑
9∈N8

(
I 9(C) − I8(C)

)
,

¤I8(C) =  �E8(C),
(6.5)

and 
, �,  � ∈ ℝ are constants. If G is connected and if


 > �!,2, � > 0,  � > 0,

then H(C) converges almost globally to a state proportional to the Fiedler
vector of graph G.

Proof. Let F(C) =
[
H(C) E(C) I(C)

]ᵀ ∈ ℝ3= denote the aug-
mented state of the network. Denoting with � = �= the identity
matrix of dimension =, the dynamics can be written in compact
form as

¤F(C) =


�!,2� − ! − 
� 0

(�!,2 + �)� − ! −(
 + �)� − �!
0  � � 0

︸                                         ︷︷                                         ︸
"

F(C).

The streamline of the proof is as follows:

1. We derive a closed form for the eigenvalues of matrix" ∈
ℝ3=×3= as a function of the eigenvalues �!,8 of the Laplacian
matrix ! ∈ ℝ=×= ;

2. We prove that" has a zero eigenvalue with algebraic and
geometric multiplicity equal to 2;

3. By means of the Routh criteria, we show that all other
eigenvalues of" have strictly negative real part;

4. Finally, we show that the space spanned by the two distinct
eigenvectors associated to the zero eigenvalue coincides with
the space spanned by the Fiedler vector for the component
H(C) of F(C), thus completing the proof.

In the following, these steps are identified with a margin note for
the sake of clarity in the presentation.

To compute the eigenvalues of matrix", we proceed by solving
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Step 2:" is shown to have
a zero eigenvalue with al-
gebraic multiplicity equal
to 2.

Step 3: all other eigenval-
ues are shown to have
strictly negative real part.

det{"−��3=} = 0. Let uspartitionmatrix" − ��3= = [� �;� �]
where

� =

[
(�!,2 − �)� − ! − 
�
(�!,2 + �)� − ! −(
 + � + �)�

]
, � =

[
0

− �!

]
,

� =
[
0  � �

]
, � = −��.

By Shur-complement, the determinant of " − ��3= is equal to
det{�} · det{� − ��−1�}, where det{�} = (−�)= and det{� −
��−1�} = det{01!

2 + 02! + 03�}, with

01(�) =
 2
�

�
, 02(�) =  2

� − �!,2
 2
�

�
+ � + �,

03(�) = � 
 + � � + �2 − �!,2 � − �!,2 � + 
�.

Finally, letting �(�) = 01(�)! + 02(�)�, we can write

det{" − ��3=} = (−�)= · det{�(�)! + 03(�)�} = 0. (6.6)

We note that:

I The eigenvalues of �(�) are denoted ��,8(�) and are given
by ��,8 = 01(�) �!,8 + 02(�).

I Matrix �(�)! is a product of two commuting matrices, i.e.,
�(�)! = !�(�), thus any eigenvalue of �(�)! is a product
of the eigenvalues of �(�) and !.

In the light of the above considerations, from eq. (6.6) we derive
the next relationships

�(�!,8��,8(�) + 03(�)) = 0, ∀8 ∈ +,

and thus by substitution ∀8 ∈ + we obtain

�3+18�2+28�+38 = 0, with
18 = 
 + � − �!,2 + �!,8
28 = (
 − �!,2)� + ( 2

� + �)�!,8
38 =  

2
��!,8(�!,8 − �!,2)

.

One cannotice that" has three eigenvalues for each�!,8with 8 ∈ + ,
which can be computed by the above equation. For 8 = {1, 2} it
holds 38 = 0 and� = 0 is a solution; moreover, by the Routh criteria
specialized for second degree polynomials, all other solutions are
strictly negative if and only if coefficients 18 , 28 are positive, which
is verified if the conditions of the theorem hold.

For 8 ∈ {3, . . . , =} it holds 38 > 0 and, by the Routh criteria special-
ized for third degree polynomials, all solutions are strictly negative
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Step 4: Two distinct eigen-
vectors are associated to
the zero eigenvalue.

if and only if in addition it holds 1828 − 38 > 0, proved next

1828 − 38 = �(�!,2 − �!,8)2 + (2
� + �2)(�!,8 − �!,2)+
+ (
� +  2

��!,8)(
 + �) > 0,

since �!,8 ≥ �!,2 for 8 ∈ {3, . . . , =}.

We conclude that, under the conditions of the theorem, matrix"
has two zero eigenvalues because 38 = 0 for 8 ∈ {1, 2} while all
other eigenvalues have negative real part. Stability of the system can
be ensured by proving that the geometricmultiplicity of eigenvalue
0 is equal to its algebraic multiplicity, which is two. We prove this
fact by showing that two distinct eigenvectors are associated to the
zero eigenvalue. Recalling that F(C) =

[
H(C) E(C) I(C)

]ᵀ ∈ ℝ3=

is the state of the overall system, we compute ¤F(C) = "F(C) = 0,
(�!,2� − !)H(C) = 0

�H(C) −  �!I(C) = 0

E(C) = 0

,

There are two feasible choices for H. First choice is H(C) = 0,
leading to !I(C) = 0, i.e., I(C) = �E!,2, ∀ � ∈ ℝ. Second choice is
H(C) = �E!,2, leading to I(C) = ��

 ��!,2
E!,2 + � 1, ∀ � ∈ ℝ. Thus, the

zero eigenvalue has the two distinct eigenvectors

41 =


0

0

E!,2

 , 42 =


E!,2
0

�
 ��!,2

E!,2 + �
� 1

 . (6.7)

We conclude that the system is marginally stable, and

lim
C→∞

H(C) = �E!,2, � ∈ ℝ.

Let ( ⊂ ℝ3= be the space orthogonal to 42. Coefficient � is null if
and only if F(0) ∈ (, which is a set of measure zero with respect
to ℝ2. Thus, if F(0) ∉ ( then H(C) almost globally converges to the
Fiedler vector, completing the proof.

Theorem 6.2.2 ensures that

lim
C→∞

H(C) = �E!,2

with � ≠ 0 if and only if the initial condition of the system is not
orthogonal to the eigenvector 42 given in (6.7). In the vicinity of
this critical hyperplane of initial conditions, � can be small thus
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leading to a large numerical error in the estimation of the Fiedler
vector. However, we point out that this critical set has measure
zero with respect to ℝ2. Moreover, if a minimal amount o noise
affecting the state variables is considered, then the condition of
� ≠ 0 is always satisfied.

6.3 Application to desynchronization of
coupled harmonic oscillators

A harmonic oscillator is a second-order linear system modeling
both amplitude"(C) and phase �(C) of an oscillator. An harmonic
oscillator 8 with natural frequency $ has dynamics given by

¤G8(C) =
[
0 −$
$ 0

]
︸     ︷︷     ︸

�

G8(C). (6.8)

Consider a network of = identical harmonic oscillators

¤G8(C) = �G8(C) + �D8(C), 8 ∈ +, (6.9)
H8(C) = �G8(C),

where G8 ∈ ℝ2 is the state of the oscillator, D8 ∈ ℝ is the control
input, H8 ∈ ℝ is the output, matrix � is given in (6.8), matrices �
and � are � = �ᵀ = [0 1]. The input

D8 = D
3
8 + D

2
8 ∈ ℝ

consists of two terms:

I the diffusive coupling D3
8
∈ ℝ among the oscillators, which

is given by

D38 (C) =
∑
9∈N8

(
H 9(C) − H8(C)

)
, 8 ∈ + ; (6.10)

I The local control feedback D2
8
∈ ℝ to be designed.

We assume that the coupling network and the communication
network coincide and thus they can be both modeled by the same
graph G: 9 ∈ N8 if and only if oscillator 8 is coupled and can
communicate with oscillator 9.
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1: If all oscillators have
the same fixed amplitude
(such is the case for Ku-
ramoto oscillators) the cen-
troid reduces to '4 9) =
1
=

∑=
8=1 4

9�8 and ' is known
as the order parameter.

Desynchronization measure

In this section we define and study the desynchronization problem
in networks of = coupled identical harmonic oscillators with
natural frequency $ ∈ ℝ.

Kuramoto [128, 129] considers oscillators described by phasors,
i.e., vectors rotating about the origin in the complex plane. When
all phasors have the same amplitude, which is assumed unitary,
their end points move along the unit circle. Kuramoto used the
magnitude of the centroid of these points as a synchronization
measure: a network of oscillators is said to be synchronized if the
centroid is on the circle, i.e., its magnitude is one.

We consider a more general case, where harmonic oscillators are
described by vectors of possibly different magnitude, rotating
about the origin of the complex place. Also in this case one can
compute the centroid of the end points of these vectors. We say
that a network of oscillators is desynchronized if the centroid is at
the origin of the complex plane, i.e., its magnitude is null.

In the case of Kuramoto oscillators, the magnitude of the centroid
is is usually referred in the literature as the order parameter [129];
the concept of order parameter is useful since it characterizes the
average dynamical behavior of the system. In the following, we
provide a generalization of the definition of order parameter to
networks of oscillators with different amplitude.

Let the steady state output of each oscillator 8 be given by

HBB8 (C) = "8 cos($C + �8) =<
{
"84

9�8 · 4 9$C
}
,

where "8 ∈ ℝ+, �8 ∈ S1 with (1 denoting the unit circle, are the
steady state magnitude, respectively, and the phase of oscillator
8, 9 denotes the imaginary unit and <{·} denotes the real part
of a complex number. Thus, the collective steady-state output
dynamics

1ᵀHBB(C) =
=∑
8=1

HBB8 (C) =<
{

=∑
8=1

"84
9�8 · 4 9$C

}
(6.11)

is encoded in the centroid1

'4 9) =
1∑=

8=1 "8

=∑
8=1

"84
9�8 ,

=∑
8=1

"8 > 0, (6.12)
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Figure 6.1: Steady-state
configurations of a net-
work of three oscilla-
tors: (a) not desynchroniza-
tion, (b) desynchroniza-
tionwith same amplitudes,
(c) desynchronization with
different amplitudes.
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where ' ∈ ℝ+ represents the phase-coherence of the population
of oscillators and ) ∈ S1 indicates the average phase. We note that
by definition the trivial case of all oscillators with zero amplitude
is ruled out; moreover, in such case the centroid in eq. (6.12) is not
well defined.

The goal is to prove that the local protocol proposed in the previous
section, achieves desynchronization in a network of diffusively
coupled harmonic oscillators in the sense shown next.

Definition 6.3.1 (Desynchronization measure) Consider a net-
work of = identical oscillators (6.8). The network is said to achieve
desynchronization if

' = 0⇔ 1ᵀHBB(C) = 0, (6.13)

i.e., the collective steady-state output dynamics (6.11) is non-null with
zero mean or, equivalently, the centroid (6.12) is at the origin of the
complex plane.

In the light of the above definition, consider a simple yet illustrative
example of a network of three oscillators. Fig. 6.1 depicts the
following configurations: (0) all phase differences are null, then
oscillators are not desynchronized, regardless of their amplitude;
(1) amplitudes are equal and the phase differences are �1 − �2 =
2�
3 , �2 − �3 =

2�
3 , then the oscillators are desynchronized, this

configuration is referred in the literature as a splay state; (2) if
"1 = 2"2 = 2"3 and �2 = �3 = �1 + �, then the oscillators are
not in a splay state but they are desynchronized, according to the
general definition we propose.

The same problem in networks of Kuramoto oscillators reduces
to the so-called phase balancing problem [66] (oscillators are
uniformly distributed over the unit circle) which has been solved
for complete graphs with a static controller [205] and balanced
graphs with a dynamic controller [201]. It is easy and relevant
to notice that achieving phase balancing is neither necessary
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nor sufficient for desynchronization in networks of harmonic
oscillators.

Local control protocol

It is known [203, 235] that a network of identical harmonic oscilla-
tors (6.8) under the diffusive coupling (6.10) achieves synchroniza-
tion if the interconnection graph is connected and symmetric. This
is due to the existence of the eigenvector 1 associated with the null
eigenvalue of the Laplacian matrix !, which drives the oscillators
toward a consensus state. On the same line of thought, in the
previous section we focused our attention on the design of a state
feedback matrix with a zero mean eigenvector, the Fiedler vector,
associated with the null eigenvalue. The same protocol employed
as a local control feedback for harmonic oscillators results in a
closed-loop state matrix with a pair of imaginary conjugate eigen-
values associated with the Fiedler eigenvector thus canceling out
the synchronization effect of the diffusive coupling and steering
the network of oscillators to a non-null but zero mean state, thus
achievingdesynchronization according toDefinition 6.3.1.

Theorem 6.3.1 (Desynchronization of harmonic oscillators) Con-
sider a network of = identical harmonic oscillators (6.9) coupled with
the diffusive coupling (6.10) and driven by the control law

D28 (C) = −
E8(C) + �!,2H8(C). (6.14)

where E8(C) ∈ ℝ is a dynamic average estimation given in (6.5). If G
is connected and

� = 
 > max

{
�!,2,

$2

2�!,2

}
,  � =

√
2
2 + $2

2�!,2
, (6.15)

then the network achieves desynchronization as in Definition 6.3.1 for
almost all initial conditions.

Proof. Let F8(C) =
[
H8(C) E8(C) I8(C)

]ᵀ ∈ ℝ3= denote the aug-
mented state of each oscillator and F(C) =

[
F1(C) . . . F=(C)

]ᵀ
denote the full state of the network. The network of coupled har-
monic oscillators (6.8) subject to the diffusive coupling (6.10) and
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the feedback control (6.14) can be written in compact form as

¤F(C) =

"︷                     ︸︸                     ︷[
(� ⊗ �∗) − (! ⊗ �∗)

]
F(C) (6.16)

H(C) = (� ⊗ �∗)F(C), (6.17)

where the operator ⊗ denotes the Kronecker product and

�∗ =


� + �!,2�� −
� 0

�(� + (�!,2 + 
)�2) −2
 0
0  � 0

 ,
�∗ =


�� 0 0

� 0  �
0 0 0

 , �∗ =
[
� 0 0

]
.

Since ! is symmetric, there exists an orthogonal matrix % such that
Λ = %ᵀ!% = diag([�!,1, . . . ,�!,=]) is a diagonal matrix. Consider
the coordinate change

F̃(C) = %̃F(C) =
[
% ⊗ �4

]
F(C), (6.18)

¤̃F(C) = "̃F̃(C)
[
%̃)"%̃

]
F̃(C), (6.19)

where, by exploiting the properties of the Kronecker product,

"̃ =

[
(� ⊗ �∗) − (Λ ⊗ �∗)

]
,

Clearly, matrices " and "̃ share the same spectrum and since
matrix "̃ is a block diagonal matrix with blocks "̃8 given by

"̃8 = �
∗ − �!,8�∗ ∀8 ∈ +,

then the eigenvalues of" are the eigenvalues of the blocks "̃8 . We
now show that, under the condition in eq. (6.15), all the eigenvalues
of blocks "̃8 are strictly inside the left half of the Gauss plane,
except for block "̃1, which has a zero eigenvalue, and block "̃2,
which has a pair of imaginary conjugate eigenvalues.
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The characteristic polynomial of each block "̃8 is

�4 + 08�3 + 18�2 + 28� + 38 = 0 ∀8 ∈ + (6.20)
08 = (2
 − �!,2) + �!,8
18 = 
(
 − �!,2) + �!,8(
 +  2

� ) + $
2

28 = 
$2 +  2
��!,8(�!,8 − �!,2)

38 =  
2
��!,8$

2.

It is clear that for 8 = 1 then 38 =  2
�
�!,1$2 = 0 and thus the

block matrix "̃1 has a zero eigenvalue. Now, by the Routh criteria,
arrange the coefficients of the polynomial, and values subsequently
calculated from them, as shown below

�4 1 18 38
�3 08 28
�2 ?8 38
�1 @8
�0 38

with
?8 =

0818−28
08

@8 =
?8 28−0838

?8

, ∀8 ∈ +. (6.21)

A necessary and sufficient condition for all roots of (6.20) to be
located in the left-half plane is that all the polynomial coefficients
08 , 18 , 28 , 38 , are positive and all of the coefficients in the first
column ?8 , @8 are positive. All these coefficients but @8 are positive
for any 8 ∈ + if


 > �!,2, ∀ � > 0. (6.22)

As far as concerns the coefficients @8 , if


 >
$2

2�!,2
,  � =

√
2
2 + $2

2�!,2
. (6.23)

then @8 = 0 for 8 = 2 and @8 > 0 otherwise. Thus, the block matrix
"̃2 has a pair of imaginary conjugate eigenvalues. Moreover,
conditions in (6.22) and (6.23) are equivalent to condition (6.15).

Exploiting the change of variable (6.18), one can write the state
evolution of the system as

F(C) = 4"CF(0) = 4 %̃"̃%̃ᵀCF(0) = %̃4"̃C %̃ᵀF(0).

and so the output can be written as

H(C) = (�= ⊗ �∗)F(C) = (�= ⊗ �∗)%̃4"̃C %̃ᵀF(0).

As C →∞, all blocks 4"̃8 C for 8 = 3, . . . , = tend to zero because of
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the negative real part of their eigenvalues. Thus, since the columns
of % are the eigenvectors of matrix ! it follows

lim
C→∞

H(C) = (�= ⊗ �∗)
[
E!,1E

ᵀ
!,1 ⊗ 4

"̃1C + E!,2Eᵀ!,2 ⊗ 4
"̃2C

]
F(0)

=

[
(E!,1Eᵀ!,1 ⊗ �

∗4"̃1C) + (E!,2Eᵀ!,2 ⊗ �
∗4"̃2C)

]
F(0).

As previously shown, matrix "̃1 has only one null eigenvalue (the
others have negative real part) with eigenvector 15 ⊗ [0 0 0 1]ᵀ, thus

lim
C→∞

4"̃1C ∝
[
03×3 03×1
01×4 1

]
.

Since
lim
C→∞

�∗4"̃1C =
[
0 1 0 0

] [
03×3 03×1
01×4 1

]
= 0

it follows

lim
C→∞

H(C) =
[
E!,2E

ᵀ
!,2 ⊗ �

∗4"̃2C
]
F(0).

The collective steady-state output dynamics results in

1ᵀHBB(C) = lim
C→∞

1ᵀH(C)

= 1ᵀ
[
E!,2E

ᵀ
!,2 ⊗ �

∗4"̃2C
]
F(0)

=

[
0 ⊗ �∗4"̃2C

]
F(0) = 0

We proved that the network reaches a steady-state with a zero
mean state output dynamics, in which each oscillator has a non-
trivial oscillatory behavior due to the pair of imaginary conjugate
eigenvalues of block "̃2, and so of". This completes the proof.

6.4 Simulations and discussion

Fiedler vector estimation

In the first simulation, aMASwith = = 7 agents (6.2), line topology
and local control law (6.4)-(6.5) is considered. Accordingly with
conditions of Theorem 6.2.2, we chose the gain for the eigenvector
estimator as 
 and the gains for the integral dynamic average
consensus estimator as �,  � as follows


 = 10, � = 20,  � = 100.
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Figure 6.2: Fiedler vector
estimation error in a line
network of 7 agents.
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Figure 6.3: Fiedler vector
estimation error in a net-
work of 5 agents.
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Figure 6.4: Convergence
time of Fiedler vector es-
timation in line networks.

All the agents’ state variables are randomly initialized in the
interval. In Fig. 6.2 it is shown how the MAS converges to a scaled
Fiedler vector, i.e.,

lim
C→∞

H(C) = �E!,2 = Ẽ!,2,

where � denotes the scale factor

� = lim
C→∞
| |H(C)| | = 0.807.

In the second simulation, we compare our protocol with the one
in [241] because of their similar structure; a MAS with = = 5
agents (6.2) and local control law (6.4) is considered. We keep our
notation for any common variable (i.e., 
, � and  �) while we use
the notation in [241] for the remaining variables (i.e., :2, :3 and  %).
Accordingly with conditions of Theorem 6.2.2, we chose the gain
for the eigenvector estimator as 
 and the gains for the integral
dynamic average consensus estimator as �,  � as follows


 = 6, � = 25,  � = 10.

The additional gains for the algorithm in [241] are chosen as
:2 = 1, :3 = 20 and  % = 50. We point out that the choices of
network topology and free parameters are the same of Example 1
in [241]. Moreover, the state variables common to the algorithms
are initialized to the same values while the extra state values of the
algorithm in [241] are chosen in order to nullify the initial error
estimation, thus guaranteeing a fair comparison. In Fig. 6.3 it is
shown the estimation error

4(C) = | |H(C) − Ẽ!,2 | |,

for both protocols, revealing that the proposed protocol provides
a faster exponential convergence rate.

In the third and last simulation, we consider aMASwith increasing
number = of agents, line topology and local control law (6.4). With
the choice of the line topology we are considering the worst
case scenario for the dynamic average estimator. According to
conditions of Theorem 6.2.2, we chose the gain for the eigenvector
estimator as 
 and the gains for the integral dynamic average
consensus estimator as �,  � as follows


 = 2�!,2, � = 10,  � = 15,

while the extra gain parameters of the protocol in [241] are chosen
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as :2 = 1, :3 = 2�!,2 and  % = 25. Fig. 6.4 shows, for different
values of =, the time required by the two algorithms to reach an
error of the order of 10−6. The simulation confirms that, in the face
of the assumption on the knowledge of the algebraic connectivity,
the proposed protocol has a faster convergence rate, making it
more scalable with the number of the agents in the network.

Desynchronization of harmonic oscillators

There are several research works focused on dynamics and control
of some typical coupled oscillator systems derived from some
practical engineering problems. In particular, synchronization of
networked mechanical oscillator systems have been subject of
interest [151, 164, 192, 216]. Here we give a physical example of
application of Theorem 6.3.1.

Consider the networked mechanical systems consisting of = train
wagons of identical mass < with linear dumper 1 interaction
[151] and a mass-spring-damper modeling the interaction with the
ground. Assuming a (ideally) null damping in order to guaran-
tee the best comfort to the passengers, and denoting the spring
coefficient with :, the model becomes the one in (6.8)-(6.10) with
natural frequency $ =

√
:/< = 0.1 and dumping coefficient 1 = 1.

The feedback control (6.14)-(6.5) models the active suspensions
between wagons and desynchronization corresponds to the mini-
mum stress on the rails since the sum of the forces becomes as the
time passes.

Simulation of a line-topology network with = = 5 nodes is shown
in Fig. 6.5 with 
 = 1.88 and  � = 2, according to Theorem 6.3.1.
The oscillators start evolving without any coupling until at C = 5

−1 1

−1

1

R

I

R(0)ejφ(0)

R(15)ejφ(15)

R(t)ejφ(t)

R(t)ejφ(t)

−1

1

5 15 35

t

1T y(0)

1T y(15)

1T y(t) for t ∈ [0, 15)

1T y(t) for t ∈ [15, 35]

y(t)

Figure 6.5: Evolution of
5 coupled harmonic oscil-
lators. The diffusive cou-
pling (6.10) is activated at
C = 5, while the desyn-
chronizing local feedback
(6.14)-(6.5) is activated at
C = 15.



6 Desynchronization via Fiedler vector estimation 95

the diffusive coupling is enabled and synchronization is achieved.
Let us denote with '(C)4 9)(C) the centroid as defined in (6.11)-(6.12)
given G(C) as the initial condition of the network G(C); it is clear that
limC→∞ '(C) = '. Thus, as can be seen in Fig. 6.5, the collective
output dynamics has constant module '(C) = 0.6 for C ∈ [0, 15). At
C = 15 the proposed control feedback is activated and the network
is shown to reach desynchronization in the sense of Definition 6.3.1,
i.e., ' = limC→∞ '(C) = limC→∞ 1

=1
ᵀH(C) = 1ᵀHBB(C) = 0.
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Dynamic Consensus on the
min/max value 7

In this chapter we are mainly concerned with the problem of
estimating the maximum (or, alternatively, the minimum) value
among a set of external reference signals given as input D8 to the
agents in discrete-time

G8(: + 1) = 5 (D8(:), G8(:), G 9(:) : 9 ∈ N8),

in a distributedway by designing the local interaction rule 5 (·). The
main working assumption and the formalization of the dynamic
min/max-consensus problem are provided in Section 7.2, while
the related literature is reviewed in Section 7.1.

After having shown how the simple max-consensus protocol [217]
is biased in non-autonomous systems and can not be applied to
solve tracking problems, in Section 7.3 we propose two strategies to
modify the popular protocol in [217] for solving the staticmin/max-
consensus by either 1) introducing a design parameter or 2) by
augmenting the state space of each agent, making also the new
protocols robust to re-initialization; these protocols are presented
in Section 7.3. The first protocol achieves bounded steady-state and
tracking error which can be traded-off for improved convergence
time by tuning the newly added protocol parameter. The second
protocol achieves zero steady-state error and bounded tracking
error and requires knowledge of an upper bound to the diameter
of the graph representing the network to be executed.We apply the
proposed dynamic max-consensus problem in the scenario of open
MASs where agents can join and leave the network during the
algorithm execution and solve for the first time a distributed size
estimation problem for an anonymous network with time-varying
size in Section 7.4. Finally, in Section 7.5 numerical simulations to
corroborate the theoretical analysis are provided.

7.1 Related literature

Dynamic average consensus

Most of the literature usually considers consensus problems for
autonomous MASs, i.e., agents converge to a state value which
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is function of the initial state of the network. On the contrary, in
the dynamic consensus problem the agents are assumed to be
non-autonomous and are requested to converge to a state value
which is a function of the time-varying reference signals given as
input to the agents, such as the average [120], the median value
[227], the min/max value and so on. The dynamic consensus
problem is related to online optimization, namely the problem
of tracking the optimal solution of a time-varying optimization
problem [Simonetto17]. The main difference between these two
problems is that the optimal value of the objective function is
usually unknown for online optimization thus usually forcing to
employ the gradient of the objective function as a local interaction
rule, while it is known in the dynamic consensus problem and
more specific and performing protocols can be designed to solve
the problem.

The literature has focused significantly on the dynamic average-
consensus problem and an insightful tutorial has been provided
by Kia et al. [120]. The pioneering work addressed the continuous-
time case by considering the derivative of the reference signals
to design the dynamics of the estimator [213], while the discrete-
time case has been addressed some years after by considering the
differences of the reference signals instead [254]. Because they
rely on the computation of inputs derivatives or differences, both
algorithms suffer from a persistent bias due to re-initialization
errors in the case of changes in the network during the proto-
col execution, as well as their vulnerability to noise. Since then,
many authors proposed variants of dynamic consensus protocols.
In [121], the problem was solved by an event-triggered approach
with intermittent communications. In [254], a discrete-time dy-
namic average consensus was proposed by exploiting a model
of the inputs by considering their finite differences of =-th order.
In [159], the authors extended the approach in [254] by proposing
a variant of the discrete-time dynamic average consensus protocol,
guaranteeing robustness against re-initialization errors. In [82], the
authors investigated the performance of a cascade of proportional
dynamic consensus in discrete-time and randomized versions in or-
der to address robustness with respect to re-initialization error and
tunable steady-state and maximum tracking error. Many other dy-
namic average consensus protocols can be found in [20, 78, 118, 204,
224], with approaches that address robustness to re-initialization
and steady-state error under various assumptions on the network
topology and the scenario where agents may join and leave the
network. Other recent works propose robust dynamic consensus
protocols in continuous-time [92] and consider graph balancing
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strategies for dynamic consensus in directed graphs [138]. For
further references, the interested reader is referred to the recent
tutorial in [120].

The min/max consensus problem

While the estimation of average values has received a lot of atten-
tion in the MAS literature, it is far from being the the only problem
of practical relevance and theoretical significance. In particular,
the development of a dynamic consensus protocol which achieve
consensus and track the value of the maximum or, alternatively,
the minimum value among the exogenous reference signals, is
missing in the actual literature. The importance of the problem
is evident from the large number of existing applications of the
static max/min-consensus problem, which include distributed
synchronization, such as time-synchronization [57] and target
tracking [186], and network parameter estimation, such as the
cardinality [143] and highest/lowest node degree [31]. The so-
called max-consensus problem has been thoroughly investigated.
Its objective is to make the states of a network of agents converge to
the maximum of their initial states [175]. First protocols solving the
max-consensus problem have been proposed by Cortes [45] and by
Tahbaz and Jadbabaie [217], in continuous-time and discrete-time
frameworks, respectively. The popular discrete-time protocol in
[217] requires that the agents update their state at each iteration
by taking the maximum among the state values of the neighbors
and their own state. This protocol was also characterized for the
max-consensus problem in [166], where conditions to achieve max-
consensus and convergence rate are derived in amax-plus algebraic
setting. Other approaches include soft-max estimators [217, 249]
and gossip based or randomized approaches [1, 109]. The max-
consensus problem has been addressed in more general scenarios.
Convergence results for time-varying networks with synchronous
switching topologies have been investigated in [167].Asynchronous
updates and communications affected by time-delays have been
considered in [94], while a stochastic framework for asynchronous
updates has been proposed in [109]. The effect of noise in commu-
nications among the agents has been characterized in [161, 250].
Finally, in the context of open MASs where the size of the network
is time-varying, a gossip algorithm for max-consensus has been
investigated in [1].
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Open network and size estimation

Since our main application considers networks wherein agent are
allowed to join or leave, the so-called open networks, we provide
here a brief review.

In this recent topic of research, interesting contributions can be
found in [79, 80, 100, 101, 226] where the authors formulate con-
sensus and dynamics consensus problems for networks of time-
varying size. Theworks in [100, 101, 226] consider stochastic arrivals
and departures of agents in the networkwhile [79, 80] does not con-
sider a model for agent arrivals and departures from the network.
An interesting problem in open networks is the estimation of the
actual number of active agents, which is precisely a time-varying
quantity to be estimated. The problem is quite straightforward to
solve in the case it is possible to assign unique IDs to the agents
and their are able to share it with their neighbors, since a triv-
ial broadcast and count technique would be effective [132, 206].
The case in which the identity of the node must be preserved is
much more challenging and falls in the framework of the so-called
anonymous networks side[238].

The size estimation problem in anonymous networks counts a high
number of interesting applications, e.g., maintenance purposes in
ad-hoc wireless sensor networks [39], optimization of query access
plans in internet-scale data networks [171], coordination of robotic
agents [33], and so on.

A fruitful strategy is based on generating random variables at each
network’s node and on the subsequent functional estimation [24].
The result of such an estimation step is used to infer the number
of nodes in the network in a distributed way. In the approach
proposed in [24] the network topology is assumed to be unknown
to the agents; however, as often happens, some mild knowledge
on the network structure is assumed to be known, in particular an
upper bound on the diameter of the network is known is usually
required to be known. In [207], max consensus is first used to
distributedly decide a leader in the graph and then exploit this fact
for node counting. Along this line of thought, consensus based
strategy has been proposed, as the one in [225], which makes use
of statistical inference methods to estimate the number of nodes
who took part in the random generation of numbers by estimating
the average or maximum number. Similarly, in [250] the problem
is solved by means of norm estimation and average consensus in
the presence of communication noise. In [60] we exploit our novel
dynamic max-consensus algorithm to enable the tracking of the
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time-varying network’s size thus avoiding the need for network
wide re-initialization of the distributed estimation procedure.

7.2 Dynamic min/max-consensus problem

We consider a network of = agents modeled as discrete-time
dynamical systems with state G8(:) ∈ ℝ< , each of which has access
to time-varying external reference signal D8(:) ∈ ℝ and interacts
with other agents according to a graph Gand a local interaction
protocol

G8(:) = 58(D8(:), G 9(: − 1) : 9 ∈ N◦8 ). (7.1)

The output of each agent is defined as

H8(:) = 68(G8(:)).

The dynamic min/max-consensus problem consists in the design
of a local interaction protocol 58(·) and an output function 68(·)
which steers the agents’ output H8(:) ∈ ℝ to track the maximum
D(:) ∈ ℝ or the minimum D(:) ∈ ℝ among the time-varying
reference signals.

Next, we state a common assumption in the dynamic consensus
literature used also in this paper, i.e., the boundedness of the
change of the reference signals in a time-window [:, : + )], with
) ∈ ℕ, which is defined as

ΔD8(:, )) = D8(:) − D8(: − )), ∀8 ∈ +. (7.2)

Assumption 7.2.1 The maximum absolute change1 1: Note that if the reference
signals are sampled ver-
sions of continuous-time
signals, then by increas-
ing the sampling frequency
their change in one itera-
tion is reduced. Thus, for
any signal with bounded
change there exists a sam-
pling frequency such that
Assumption 7.2.1 is also
satisfied.

of the reference
signals in one ) = 1 instant is bounded by a constantΠ ∈ ℝ+, i.e.,

|ΔD8(:, 1)| ≤ Π, ∀8 ∈ +, ∀: ≥ 0. (7.3)

In a similar way, we define the change of the maximum and the
minimum, respectively, among the reference signals as

ΔD(:, )) = D(:) − D(: − )),
ΔD(:, )) = D(:) − D(: − )).

(7.4)

In this paper we also deal with the scenario of an open multi-agent
system (OMAS), wherein the agents may leave or join, thus result-
ing in a network’s change in terms of number of active agents and
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active communication channels. These changes in the network are
encoded into a time-varying graph G(:) = (+(:), �(:)) describing
the interconnection among the =(:) active agents. As soon as such
a change occurs, the new agents’ reference signals can be possi-
bly much larger or smaller than those of the agents previously
connected to the network. Thus, to address open networks we
assume that the frequency at which the agents can join or leave
the network is bounded as formalized next.

Assumption 7.2.2 There exists a minimum dwell time Υ ∈ ℕ

between two consecutive changes of the graph G.

The main objective of this work is to provide two local interaction
protocols (7.1) that solve the dynamicmin/max-consensus problem
described above in MAS. The proposed protocols are shown to be
robust to re-initialization, or, in other words, their execution does
not need to be interrupted and the state of the agents re-initialized
after the network changes in topology or size, thus enabling their
use in openMAS.We characterize the performance of the proposed
protocols in terms of convergence time as well as tracking error

4(:) = max
8∈+
|H8(:) − D(:)|, 4(:) = max

8∈+
|H8(:) − D(:)|. (7.5)

7.3 Proposed distributed and unbiased
protocols

The popular protocol [94, 161, 166, 217] which solves the min/max-
consensus problem makes use of the following local interaction
rules, respectively,2

G8(:) = max
9∈N◦

8

{G 9(: − 1)}, (7.6)

G8(:) = min
9∈N◦

8

{G 9(: − 1)}, (7.7)

with G8 ∈ ℝ. These protocols enable the agents’ states to converge to
the maximum/minimum among the initial state. Thus, assuming
a set of constant reference signals D8(:) = D8(0) ∈ ℝ for : ∈ ℕ,
the protocols estimate their maximum by requiring the following
initialization step

G8(0) = D8(0). (7.8)
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A naive generalization of these protocols to deal with time-varying
inputs could be

G8(:) = max
9∈N◦

8

{G 9(: − 1), D8(:)}. (7.9)

G8(:) = min
9∈N◦

8

{G 9(: − 1), D8(:)}. (7.10)

For static inputs the protocols in eq. (7.9)-(7.10) are equivalent to
those in eq. (7.6)-(7.7). These protocols are biased in the following
sense:

I Themax-consensus protocol in eq. (7.9) provides a consensus
value which is non-decreasing and thus it cannot track the
max value of arbitrary time-varying signals that decrease in
value;

I Themin-consensusprotocol in eq. (7.10) provides a consensus
value which is non-increasing and thus it cannot track the
min value of arbitrary time-varying signals that increase in
value.

Figure 7.1 shows the evolution of a random network of agents
executing protocols in eq. (7.9)-(7.10) with time-varying reference
signals and without any re-initialization logic. As one cannotice,
the tracking is lost every time the maximum or minimum among
the reference signals is below or above the agents’ states, respec-
tively. Therefore, only a re-initialization of the protocol execution
in the whole network can mitigate such an estimation bias for
time-varying reference signals, which is a significant drawback
for the implementation of a distributed algorithm in large-scale
networks.

We propose two different approaches to modify the conventional
protocols in eq. (7.9)-(7.10) in order to overcome the issue of
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Figure 7.1: Biased be-
havior of conventional
max-consensus protocol
in eq. (7.9) and min-
consensus protocol in
eq. (7.10).
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re-initializing the network and thus allowing the tracking of time-
varying reference signals:

1. The first approach enables the agents to converge to an approx-
imate consensus on the min/max value without requiring
any information about the network graph. The two protocols
are named:

I Dynamic Max-Consensus (DMAC) Protocol;
I Dynamic min-Consensus (DMIC) Protocol.

2. The second approach enables the agents to reach an exact
consensus on themin/max value by requiring the knowledge
of an upper bound of the network’s graph diameter. The two
protocols are named:

I Exact Dynamic Max-Consensus (EDMAC) Protocol;
I Exact Dynamic min-Consensus (EDMIC) Protocol.

Remark 7.3.1 All protocols proposed in this section are robust
to re-initialization. This means that if a change in the network
happens, such as a variation of the topology or the number of
active nodes, there is no need to re-initialize the state of the
agents to guarantee the tracking of the min/max value. Clearly,
the change may results in an unpredictable discontinuity of the
quantity of interests, thus a certain amount of time, called the
convergence time, to re-establish an effective tracking is required.
Their robustness enables their employment in time-varying
and/or open networks, as in the case of our main application.

Dynamic min/max-consensus (DMAC/DMIC)
protocols

In this section we consider networks of agents with scalar state
G8 ∈ ℝ. The strategy proposed in this section suggests integrating
an additive parameter 
 in the generalized protocol in eq. (7.9)-
(7.10) allowing non monotonic estimation behavior. The proposed
local interaction rules become the following

G8(:) = max
9∈N◦

8

{
G 9(: − 1) − 
, D8(:)

}
(7.11)

G8(:) = min
9∈N◦

8

{
G 9(: − 1) + 
, D8(:)

}
(7.12)
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where 
 ∈ ℝ+ is a scalar tuning parameter and the output is,

H8(:) = G8(:),

which represents the current estimated value. Before stating the
main theorem characterizing these protocols, we need two useful
lemmas; these lemmas provides, respectively, an upper bound to
themaximumamong the states and a lower bound to theminimum
of the states.

Lemma 7.3.1 Consider a MAS wherein agents evolve according
to (7.11), i.e.,

G8(:) = max
9∈N◦

8

{
G 9(: − 1) − 
, D8(:)

}
,

and assume Assumption 7.2.1 to be in force. For any arbitrary initial-
ization G8(0) ∈ ℝ with 8 ∈ + , and any generic initial instant of time
:0 ∈ ℕ, if graph G is connected and if 
 > Π then the maximum
among the inputs is upper bounded by

G(:) = D(:), : ≥ :0 + )′, (7.13)

with G(:) = max
8∈+

G8(:) and

)′ =
max

{
H(:0) − D(:0), 0

}

 −Π . (7.14)

Proof. At time : ≥ :0 + ) ≥ 1, it holds

G(:) = max
8∈+

G8(:)

= max
8∈+

max
9∈N◦

8

{G 9(: − 1) − 
, D8(:)}

= max
8∈+
{G8(: − 1) − 
, D8(:)}

= max{G(: − 1) − 
, D(:)}
= max{G(: − 1) − 
, D(: − 1) + ΔD(:, 1)}
≥ max{G(: − 2) − 2
, D(: − 2) + ΔD(:, 2)}

≥ ...

≥ max{G(:0) − )
, D(:0) + ΔD(:, ))}
≥ max{G(:0) − )
, D(:0) − )Π}

where the last inequality follows from Assumption 7.2.1, in fact
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ΔD(:, )) ∈ [−)Π, )Π]. Due to condition (7.16), the maximum
change of the inputsΠ is smaller than 
, therefore there exists a
time after which the system "reaches" the input, i.e.,

G(:0) − )
 < D(:0) − )Π.

Solving for ), we obtain )′ as in (7.14). Thus, for : ≥ )′, it holds
G(:) = D(:),, proving the veracity of eq. (7.13).

Lemma 7.3.2 Consider a MAS wherein agents evolve according
to (7.11), i.e.,

G8(:) = max
9∈N◦

8

{
G 9(: − 1) − 
, D8(:)

}
,

and assume Assumption 7.2.1 to be in force. For any arbitrary initial-
ization G8(0) ∈ ℝ with 8 ∈ + , and any generic initial instant of time
:0 ∈ ℕ, if graph G is connected and if 
 > Π then the minimum
among the inputs is lower bounded by

G(:) ≥ D(:) + ΔD(:, �G) − 
�G, : ≥ :0 − �G, (7.15)

with G(:) = min
8∈+

G8(:).

Proof. At time :0 we define the set

V0 = {8 ∈ + : G8(:0) = G(:0)}

denoting the set of agents whose state at time :0 is the maximum
among all others. Next, we define the set V1 as the set of one-hop
neighbors of nodes in set V0. Formally,

V1 =
{
8 ∈ + : (8 , 9) ∈ �, 9 ∈ V0

}
.

The state update rule (7.11) at : = :0 + 1 for the agents belonging
to this set reduces to

G8(:0 + 1) = max{G(:0) − 
, D8(:0 + 1)}, ∀8 ∈ V1

because they have a neighbor 9 ∈ +0 with state value G 9(:0) = G(:0).
By induction, define the set

Vℓ =

{
8 ∈ + : (8 , 9) ∈ �, 9 ∈

ℓ−1⋃
B=0

VB

}
,
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Protocol 1: Dynamic Max-Consensus (DMAC)
Initialization: G8(0) ∈ ℝ for 8 ∈ + .
Init. for opt. conv. time: G8(0) = D8(0) for 8 ∈ + .
Input: Tuning parameter 
 ∈ ℝ+.
Output: H8(:) = G8(:) ∈ ℝ for 8 ∈ + .

1 for : = 0, 1, 2, . . . each node 8 do
2 Gather G 9(:) from each neighbor 9 ∈ N8
3 Update the current state according to

4 G8(:) = max
9∈N◦

8

{
G 9(: − 1) − 
, D8(:)

}
Protocol 2: Dynamic min-Consensus (DMIC)
Initialization: G8(0) ∈ ℝ for 8 ∈ + .
Init. for opt. conv. time: G8(0) = D8(0) for 8 ∈ + .
Input: Tuning parameter 
 ∈ ℝ+.
Output: H8(:) = G8(:) ∈ ℝ for 8 ∈ + .

1 for : = 0, 1, 2, . . . each node 8 do
2 Gather G 9(:) from each neighbor 9 ∈ N8
3 Update the current state according to

4 G8(:) = min
9∈N◦

8

{
G 9(: − 1) + 
, D8(:)

}
and for all agents in these sets the state update rule (7.11) reduces
to

G8(:0 + ℓ ) = max{G(:0) − ℓ
, D8(:0 + ℓ )}, ∀8 ∈ Vℓ .

Since the longest shortest path between two nodes in a connected
graph is at most equal to its diameter �G, for ℓ ≥ �G it holds
Vℓ ≡ + . Therefore, for : ≥ :0 + �G it holds

G8(:) = max{G(: − �G) − ℓ
, D8(:)}, ∀8 ∈ V.

Finally, by the trivial property of the max function and eq. (7.13)
the next chain of inequalities holds,

G(:) ≥ G(: − �G) − �G


≥ D(: − �G) − �G


≥ D(:) − ΔD(:, �G) − 
�G.

In Protocols 1-2 we detail the Dynamic Max-Consensus (DMAC)
and the Dynamic min-Consensus (DMIC) Protocols, respectively,
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while in the next theorem we provide a characterization of the
convergence time and the tracking error.

Theorem 7.3.3 Consider a MAS executing either Protocol 1 or Proto-
col 2 under Assumption 7.2.1, with arbitrary initialization G8(0) ∈ ℝ
for 8 ∈ + and consider a generic initial instant of time :0 ∈ ℕ. If graph
G is connected and if


 > Π, (7.16)

then there exists a convergence time )2 such that the tracking errors
defined in eq. (7.5) are bounded for : ≥ :0 + )2 > 0 by

4(:) ≤ |
�G+ ΔD(:, �G)| ≤ (
 +Π)�G, (7.17)

where3 3: The error 4(:) and the
change ΔD(:, ·) are to be
understood as the error on
the max value 4(:) and the
change of the max value
ΔD(:, ¤) for Protocol 1 and
the error on the min value
4(:) and the change of the
min value ΔD(:, ¤) for Pro-
tocol 2.

4(:) and ΔD(:) are given in (7.5) and (7.4), and it holds

)2 ≤ max
{
�G,

3(:0)

 −Π

}
, (7.18)

where the distance 3(:0) is equal to H(:0) − D(:0) for Protocol 1 and
to H(:0) − D(:0) for Protocol 2.

Proof. We first consider the case of Protocol 1 and then the case of
Protocol 2 is derived as a special case by showing its equivalence
with Protocol 1.

Thus, let us first consider Protocol 1. By Lemmas 7.3.1-7.3.2, at a
generic time :0 ∈ ℕ the maximum and the minimum among the
agents’ states are bounded by the following

G(:) = D(:), : ≥ :0 + )′,
G(:) ≥ D(:) + ΔD(:, �G) − 
�G, : ≥ :0 + �G,

where )′ is given by

)′ =
max

{
G(:0) − D(:0), 0

}

 −Π .

The above relations are both satisfied for : ≥ :0 +max{�� , )′}.
This proves that the convergence time is upper bounded as in
eq. (7.18). Considering the output H8(:) = G8(:), the bound on the
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tracking error given in (7.17) can be derived as follows

4(:) = max
8∈+
|H8(:) − D(:)|

= max
8∈+
|G8(:) − D(:)|

= max{|G(:) − D(:)|, |G(:) − D(:)|}
= |G(:) − D(:)|

≤
���
�G+ ΔD(:, �G)

��� ≤ (
 +Π)�G,

where the last inequality is due to Assumption 7.2.1.

Let us now consider Protocol 2. Let E(:) = −D(:) for which it holds
E(:) = −D(:) and rewrite the local interaction rule as

G8(:) = min
9∈N◦

8

{
G 9(: − 1) + 
, D8(:)

}
= min

9∈N◦
8

{
G 9(: − 1) + 
,−E8(:)

}
= −max

9∈N◦
8

{
−G 9(: − 1) − 
, E8(:)

}
.

By letting I8(:) = −G8(:), one concludes that the MAS with state
G(:) and input D(:) executing Protocol 2 and estimating D(:) is
equivalent to a MAS with state I(:) and input E(:) executing
Protocol 1 and estimating E(:), for which it holds the proof for
Protocol 1.

In the next corollaries we make explicit the convergence time in
the case of optimal initialization and the steady-state error in the
case of constant reference signals.

Corollary 7.3.4 The convergence time for Theorem 7.3.3 in the case of
an optimal initialization G8(0) = D8(0) satisfy the following condition
for : ≥ )2 > 0

)2 ≤ �G. (7.19)

Corollary 7.3.5 The estimation errors for Theorem 7.3.3 in the case
of constant reference signals, i.e., Π = 0, satisfy the following strict
condition for : ≥ )2 ≥ 0

4(:) = 
�G. (7.20)
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Remark 7.3.2 In the case of constant inputs, i.e.,Π = 0, the choice
of the parameter 
 must satisfy 
 > 0. The case of 
 = 0 with
optimal initialization G8(0) = D8(0) corresponds to the popular
protocols in eq. (7.9)-(7.10) which have been shown to be biased
and unsuitable to solve a tracking problem at the beginning
of this section. In fact, the error 4(:) = 0 and the convergence
time )2 ≤ �G are derived as a special case. We point out that for

 = 0 the results in Theorem 7.3.3, which assume an arbitrary
initialization, do not hold.

From Theorem 7.3.3, it follows that to minimize the absolute
estimation error one needs to choose the smallest 
 satisfying the
design condition in eq. (7.16). On the other hand, 
 determines the
convergence time )2 as explained to Remark (7.3.2), with smaller
values of 
 giving a greater convergence time. Thus, the value
of 
 trades-off estimation error and convergence time. It follows
that a pragmatic design criterion for the choice of 
 is to first
fix the desired steady-state error and then choose the largest 

which allows to satisfy the error performance constraint while
minimizing the convergence time.

Exact dynamic min/max-consensus
(EDMAC/EDMIC) protocols

In this section we consider networks of agents with vector state
G8 = [G0

8
, G1

8
, . . . , G<

8
]ᵀ ∈ ℝ< where < ∈ ℕ is an upper bound

on the diameter of the underlying communication network, i.e.,
< ≥ �G. The strategy proposed in this section suggests to replicate
the initialization step in eq. (7.8) of the conventional protocol at
each instant of time in the first element G0

8
of the state vector and

then cascade the conventional protocol in eq. (7.6)-(7.7) over the
remaining state variables: the estimate of each agent is the last state
G<
8
. The proposed local interaction rules are formalized next

G0
8 (:) = D8(:)

Gℓ8 (:) = max
9∈N◦

8

{
Gℓ−1
9 (: − 1)

}
, ℓ = 1, . . . , <, (7.21)

Gℓ8 (:) = min
9∈N◦

8

{
Gℓ−1
9 (: − 1)

}
, ℓ = 1, . . . , <, (7.22)

and the output is the last state variable,

H8(:) = G<8 (:),
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Protocol 3: Exact Dynamic Max-Consensus (EDMAC)
Initialization: G8(0) ∈ ℝ for 8 ∈ + .
Init. for opt. conv. time: G8(0) = D8(0) for 8 ∈ + .
Input: Network’s diameter upper bound < ∈ ℕ.
Output: H8(:) = G<8 (:) ∈ ℝ for 8 ∈ + .

1 for : = 0, 1, 2, . . . each node 8 do
2 Gather G 9(:) from each neighbor 9 ∈ N8
3 Update the first current state according to

4 G0
8 (:) = D8(:)

5 for ℓ = 1, . . . , < do
6 Update the current state according to

7 Gℓ8 (:) = max
9∈N◦

8

Gℓ−1
9 (: − 1)

which represents the current estimated value.

In Protocols 3-4 we detail the Exact Dynamic Max-Consensus (ED-
MAC) and the Exact Dynamic min-Consensus (EDMIC) Protocols,
respectively, which make use of the two local interaction rules
described above. The two protocols are characterized in the next
theorem.

Theorem 7.3.6 Consider a MAS executing either Protocol 3 or Proto-
col 4 under Assumption 7.2.1 and consider a generic initial instant of
time :0 ∈ ℕ. If graph G is connected and if

< ≥ �G, (7.23)

then there exists a convergence time )2 such that the tracking errors
defined in eq. (7.5) are bounded for : ≥ )2 > 0 by

4(:) ≤ |ΔD(:, <)| ≤ <Π, (7.24)

where4 4: The error 4(:) and the
change ΔD(:, ·) are to be
understood as the error on
the max value 4(:) and the
change of the max value
ΔD(:, ¤) for Protocol 1 and
the error on the min value
4(:) and the change of the
min value ΔD(:, ¤) for Pro-
tocol 2.

4(:) and ΔD(:) are given in (7.5) and (7.4), and it holds

)2 = <. (7.25)

Proof. We first prove the theorem with Protocol 1 and then the
proof of the theorem with Protocol 2 is derived as a special case by
showing its equivalence with Protocol 1.
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Protocol 4: Exact Dynamic max-Consensus (EDMIC)
Initialization: G8(0) ∈ ℝ for 8 ∈ + .
Init. for opt. conv. time: G8(0) = D8(0) for 8 ∈ + .
Input: Network’s diameter upper bound < ∈ ℕ.
Output: H8(:) = G<8 (:) ∈ ℝ for 8 ∈ + .

1 for : = 0, 1, 2, . . . each node 8 do
2 Gather G 9(:) from each neighbor 9 ∈ N8
3 Update the first current state according to

4 G0
8 (:) = D8(:)

5 for ℓ = 1, . . . , < do
6 Update the current state according to

7 Gℓ8 (:) = min
9∈N◦

8

Gℓ−1
9 (: − 1)

Thus, let us first consider Protocol 1. At time :0, we define the set

V0 =

{
8 ∈ + : G0

8 (:0) = max
9∈+

G0
9 (:0)

}
.

Since by Protocol 3 it holds G0
8
(:) = D8(:), then

V0 =
{
8 ∈ + : G0

8 (:0) = D(:0)
}
.

Let us now consider time the set V1 of one-hop neighbors of nodes
in set V0. Formally,

V1 =
{
8 ∈ V : (8 , 9) ∈ �, 9 ∈ V0

}
.

The update rule (7.21) of the state G1
8
for agents belonging to this

set reduces to

G1
8 (:0 + 1) = D(:0), ∀8 ∈ V1

because all agents 8 ∈ V1 have a neighbor 9 ∈ V0 with state value
G0
9
(:0) = D(:0 − 1). By induction, for ℓ ≥ 1 define

Vℓ =

{
8 ∈ + : (8 , 9) ∈ �, 9 ∈

ℓ−1⋃
B=0

VB

}
,

and for all agents in these sets the update rule (7.11) of the state Gℓ
8

reduces to
Gℓ8 (:0 + ℓ ) = D(:0).

By noticing that V< ≡ V�G
≡ + , we infer that for all 8 ∈ + and for
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any time : ≥ :0 + <, it holds

G<8 (:) = D(: − <), (7.26)

which proves that the convergence time )2 is equal to the upper
bound< as in eq. (7.25). Furthermore, by Assumption 7.2.1 it holds
D(:) = D(:−<)+ΔD(:, <) and exploiting (7.26) we conclude that
for any : ≥ < the bound on the tracking error given in (7.24) is
correct since

4(:) = max
8∈+
|H8(:) − D(:)|

= max
8∈+
|G<8 (:) − D(:)|

≤
���ΔD(:, <)��� ≤ <Π,

where the last inequality is due to Assumption 7.2.1.

Let us now consider Protocol 2. Let E(:) = −D(:) for which it holds
E(:) = −D(:) and rewrite the local interaction rule as

G0
8 (:) = D8(:) = −E8(:)

Gℓ8 (:) = min
9∈N◦

8

{
Gℓ−1
9 (: − 1)

}
, ℓ = 1, . . . , <,

= −max
9∈N◦

8

{
−Gℓ−1

9 (: − 1)
}
, ℓ = 1, . . . , <.

By letting I8(:) = −G8(:), one concludes that the MAS with state
G(:) and input D(:) executing Protocol 4 and estimating D(:) is
equivalent to a MAS with state I(:) and input E(:) executing
Protocol 3 and estimating E(:), for which holds the proof for
Protocol 3.

In the next corollary we make explicit the steady-state error in the
case of constant reference signals.

Corollary 7.3.7 The estimation errors for Theorem 7.3.6 in the case of
constant reference signals are null,

4(:) = 0, : > )2 = <. (7.27)
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Protocol 5: Dynamic Size-Estimation (DSE)
Input: Number of random numbers ? ∈ ℕ.
Output: =̂8(:) =

−?∑?

9=1 log(H8 9(:))
for 8 ∈ +(:).

1 for : = 0, 1, 2, . . . each node 8 do
2 if : = 0 or 8 ∈ +(:) \+(: − 1) then
3 D8ℓ (:) ∼ *(0, 1) for ℓ = 1, . . . , ?
4 for ℓ = 1, . . . , ? do
5 Execute either Protocol 1 or Protocol 3 with inputs

[D1ℓ (:), . . . , D=(:)ℓ (:)]

7.4 Application to size estimation of
dynamic networks

In this section we focus on the problem of computing the size of
a network, i.e., the number of active nodes in it: we describe the
interconnections at time : ∈ ℕ among the =(:) active agents with
a time-varying graph G(:) = (+(:), �(:)).

The complexity of this problem heavily depends on the assump-
tions on the network. Here we consider the framework of anony-
mous networks [238] wherein the agents cannot be identified
within the network, thus guaranteeing security and privacy of
the nodes but hindering their cooperation, and each node only
knows its neighbors and has not information on the topology, or at
most only a little information such as a bound on the network size.
The size estimation problem in anonymous network counts a high
number of interesting applications, e.g., maintenance purposes in
ad-hoc wireless sensor networks [39], optimization of query access
plans in internet-scale data networks [171], coordination of robotic
agents [33], and so on. In the next subsection we describe and
characterize our protocol for estimating the time-varying network’s
size.

Dynamic size-estimation protocol

Our strategy, which is formalized in Protocol 5 and characterized
in Theorems-7.4.1-7.4.2, extends the one proposed in [225] to
networks where the agents are free to join or leave at any time, thus
resulting in a time-varying network’s size =(:) to be estimated by
the agents. The strategy is based on statistical inference concepts
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The number ? of genera-
tions is a design parameter:
the higher is the value of
?, the better is the estima-
tion at steady-state but the
slower is the convergence
rate.

and can be outlined in three main steps: generation, estimation
and inference, described next.

1. (Generation) When a node 8 joins the network generates
? ∈ ℕ+ independent random numbers Dℓ

8
∈ [0, 1] from a

uniform distribution, i.e., Dℓ
8
∼ *(0, 1)with ℓ = 1, . . . , ?;

2. (Estimation) The =(:) active nodes execute either Protocol 1
or Protocol 3, thus each node 8 computes ? estimates H8ℓ
of the maximum value among each local set [Dℓ1 , . . . , Dℓ=(:)]
with ℓ = 1, . . . , ?;

3. (Inference) Each node 8 infers the network size =̂8(:) by max-
imum likelihood estimation from its own set of estimations
[H1
8
, . . . , H

?

8
].

Between any two changes in the network the estimation problem
reduces to the max-consensus problem on static inputs. However,
whenever an agent leaves or joins the network, the set of inputs
change, and so do their maximum values. Protocol 1 and Protocol 3
guarantee the convergence of the agent’s estimation to the new
set of inputs thanks to their robustness to the initial condition.
Intuitively, the rate at which agents leave or join the network is
correlated to the change of the maximum values to be estimated
and thus some critical scenarios may happen. Here, we just make
the assumptions that our protocols can run a sufficiently high
number of iterations such that an equilibrium is reached after each
change of the network: the minimum dwell time Υ between two
changes of the network ensured by Assumption 7.2.2 is required
to be greater or equal than the convergence time )2(:0) of the
employed protocol.

Theorem 7.4.1 Consider an OMAS executing Protocol 5 under As-
sumptions 7.2.2 and consider a generic initial time :0 ∈ ℕ at which
the network changes, i.e., G(:0 − 1) ≠ G(:0).

Adopting Protocol 1 under the conditions of Corollary 7.3.5 and if
the dwell time is greater than the convergence time, i.e., Υ ≥ )2 , the
expected value for : ≥ )2 is

E [=̂8(:)] = �?−14�=?(�?)?Γ(1 − ?, �=?), (7.28)

where � = �G
 is the steady-state error due to Protocol 1 and Γ(·)
denotes the upper incomplete gamma function5 5: The upper incomplete

gamma function Γ(0, G)
is defined as follows
Γ(0, G) =

∫ ∞
G
C0−14−C3C.

There does not exist
a closed form of this
function, but it is usually
implemented in pro-
gramming platforms. For
example, with MATLAB it
can be computed with the
command igamma(a,x).
For further details we refer
the reader to [18]

.

Theorem 7.4.2 Consider an OMAS executing Protocol 5 under As-
sumptions 7.2.2 and consider a generic initial time :0 ∈ ℕ at which
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the network changes, i.e., G(:0 − 1) ≠ G(:0).

Adopting Protocol 3 under the conditions of Corollary 7.3.7 and if
the dwell time is greater than the convergence time, i.e., Υ ≥ )2 , the
expected value for : ≥ )2 is

E [=̂8(:)] =
=?

? − 1
(7.29)

Proof. The proof of the above theorems is given here.

Since by Assumption 7.2.2 the network remains unchanged for
: ∈ [:0, :0 + Υ], then by Protocol 5 the reference signals and their
maximum are constant in this interval of time and conditions
of Corollaries 7.3.5-7.3.7 are met. Therefore, in the remaining
of the proof we consider a generic time : ≥ )2 at which the
estimation protocols have reached the steady-state and omit the
time dependence (:).

Consider the samples of numbers D19 , . . . , D=9 for any 9 = 1, . . . , ?.
Each of these numbers is randomly generated with probability
distribution function%(0) = 0 for 0 ∈ [0, 1] and%(0) = 0 otherwise.
The maximum value of the sample

D 9 = max
9∈+

D8 9 , ∀9 = 1, . . . , ?.

is the the =-th order statistics of the sample. Consider now the
sample obtained by the =-th order statistics of each randomnumber
generated by the agents, i.e.,

D̃ = {D1, . . . , D?}.

All variables in the sample are i.i.d. randomvariableswith probabil-
ity density function ?=(0) = =%=−1(0) depending on the parameter
=. Thus, the likelihood function L(= |D̃) can be computed as the
product of the probability density functions,

L(= |D̃) =
?∏
9=1

?=(D 9) = =?
?∏
9=1

D
=−1
9 .

In practice, it is often convenient toworkwith the natural logarithm
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Discussion for Protocol 1

of the likelihood function, called the log-likelihood

L∗(= |D̃) = ln (L(= |D̃)) = ln

(
=?

?∏
9=1

D
=−1
9

)
= ln (=?) +

?∑
9=1

ln
(
D
=−1
9

)
= ? ln (=) + (= − 1)

?∑
9=1

ln D 9 .

By computing the value =̂ maximizing the log-likelihood function
one obtains the best estimate of the size = of the network, which is
given by

=̂ =
−?∑?

9=1 ln
(
D 9

) . (7.30)

However, variables D 9 are not known exactly at each node, and
instead they know their estimate H8 9 . Therefore, the best estimation
=̂8 an agent can do is to implement the following

=̂8 =
−?∑?

9=1 ln
(
H8 9

) , ∀8 ∈ +. (7.31)

It is necessary to understand how the error arising from the use
of H8 9 ≠ D 9 affects the estimation of =̂. We start our discussion
taking into consideration the employment of Protocol 1 for which
a non-null error is reached at steady-state. Then, as a special case
for zero error, we derive the discussion for Protocol 3.

By Corollary 7.3.5 the steady-state error for Protocol 1 in the
estimating of D 9 is bounded by the following

4 9 = max
8∈+

��H8 9 − D 9 �� ≤ �G · 
 = �. (7.32)

A fundamental consideration, resulting from the constructing
proof of Theorem 7.3.3 and Corollary 7.3.5, is that at steady-
state the estimation H8 9 of agent 8 of the quantity D 9 is always an
underestimation, i.e., H8 9 ≤ D 9 for all 8 ∈ + . With this consideration
in mind, it is easy to realize that the worst case is when at least
one agent underestimates all variables D 9 with maximum error
� = �G
. Thus,we consider such aworst case scenario by assuming
that

∃8 ∈ + : H8 9 = D 9 − �, ∀9 = 1, . . . , ?. (7.33)
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Under condition (7.33) we obtain a lower bound =̂∗ on the estima-
tion =̂8 of each agent, which is obtained as follows

=̂8 =
−?∑?

9=1 ln
(
D 9 − �

)
=

−?∑?

9=1 ln
(
D 9(1 − �

D 9
)
)

=
−?∑?

9=1

[
ln D 9 + ln

(
1 − �

D 9

)]
≥

−?∑?

9=1

[
ln D 9 + ln (1 − �)

]
≥

−?∑?

ℓ=1
(
ln D 9 − �

)
≥

?∑?

9=1(− ln D 9) + ?�

≥ 1
1
?

∑?

9=1(− ln D 9) + �
= =̂∗ (7.34)

At the denominator of (7.34) we can recognize the term

� =
1
?

?∑
9=1
− ln D 9 . (7.35)

Now consider the following conceptual steps:

1. VariablesD 9 are beta randomvariableswith shapeparameters
equal to (=,1), since they are the =-th order statistics of a
sample of = random numbers drawn from a continuous
distribution;

2. Variables − ln D 9 are exponential random variables with
rate = due to the equivalence to the beta distribution with
parameters (=,1);

3. Variable � as in (7.35) is a gamma random variable with
shape ? and rate ?= since they are the averaged sum of
exponential functions.

Therefore, by means of the law of the unconscious statistician, we can
calculate the expected value of =̂∗ as follows

E[=̂∗] =
∫ ∞

0
5 (G)6(G)3G, (7.36)

where 5 (G) = 1/(G + �) is the relation between =̂∗ and the gamma
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Discussion for Protocol 3

variable �, while 6(G) is the probability density function of the
gamma variable �, i.e.,

6(G) =
(
=?

)?
(? − 1)!G

?−14−=?G

Solution to (7.36) can be computed through several solver (we have
used Wolfram|Alpha Pro engine) and it is giving by the following

E[=̂∗] = �?−14�=?(=?)?Γ(1 − ?, �=?),

where Γ(?, G) is known as the upper incomplete gamma function.
We point out that this expression holds for =, ? ∈ ℕ and � ∈ ℝ
such that = ≥ 1, ? > 1 and � ≥ 0. This completes the first part of
the proof.

By Corollary 7.3.7 the steady-state error in the estimating of D 9 is
bounded by the following

4 9 = max
8∈+

��G 8 9 − D 9 �� = 0 = �.

Solution to (7.36) for � = 0 is given by the following

E[=̂∗] =
=?

? − 1
.

We point out that this expression holds for =, ? ∈ ℕ and � ∈ ℝ
such that = ≥ 1, ? > 1 and � ≥ 0. This completes the second
part of the proof. This result is coherent to the expected value
provided in [225], thus proving (7.29) and confirming that (7.28)
is a generalization for � ≥ 0.

7.5 Simulations and discussion

To illustrate the performance of the proposed protocols, simulation
results are given in this section. First, we consider the DMAC and
EDMAC Protocols simulating a worst-case scenario network with
line topology. Second, we simulate the DMAC Protocol tracking
a sinusoidal input for different choices of the design parameters,
showing that convergence time and tracking error can be traded-
off. Third, we apply these protocols in the context of distributed
size estimation of open networks considering the case of scale-
free networks with approximately fixed diameter. Without loss of
generality in this section we limit the simulations to the dynamic
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max-consensus protocols; dual simulations for the dynamical
min-consensus problem are omitted.

Example 1: comparison of DMAC and EDMAC
Protocols

We simulate a network of = = 10 agents with line topology. The
choice of the line topology is instrumental to run simulations in
the worst case scenario. In fact, for line graphs the information
takes exactly �G = = − 1 = 9 steps to flow through the network,
thus maximizing the error for a fixed number of agents.

Figures 7.2-7.3 show the evolutions of the output variables (dashed
red lines) and of the maximum among the time-varying inputs
(solid blue line) when Protocol 1 or Protocol 3 are run over theMAS,
respectively. The agents are uniformly initialized in the interval
[0, 1.5] and inputs are set to be equal to −1 for all nodes but the
6-th one, which is initialized at D6(0) = 0.5 to be the maximum.
All inputs remain constant except for the 6-th component, the
maximum, which is time-varying with respect to the following

D6(: + 1) =



D6(:) if : < 100
D6(:) −Π if : ∈ [100, 150)
D6(:) if : ∈ [150, 200)
D6(:) +Π if : ∈ [200, 250)
D6(:) if : ≥ 250

, (7.37)

with initial condition D6(0) = 0 and Π = 0.02 being the absolute
change according to Assumption 7.2.1. The design for the DMAC
Protocol and its characterization provided by Theorem 7.3.3 are
given next:

I Input parameter 
 = 0.021;
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Figure 7.2: Evolution of a
MAS evolving according
to Protocol 1 in Example 1:
� denotes the bound on
the tracking error as in eq.
(7.24) and �BB denotes the
bound on the steady-state
error as in eq. (7.20).
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Figure 7.3: Evolution of a
MAS evolving according to
Protocol 3 in Example 1:
� denotes the bound on
the tracking error as in
eq. (7.17), while the steady-
state error is zero.
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Figure 7.4: Evolution of a
MAS evolving according to
Protocol 1 in Example 2:.

I Convergence time )2 = 32;
I Bound on the tracking error � = 0.37;
I Bound on the steady-state error �BB = 0.19.

The design for the EDMAC Protocol and its characterization pro-
vided by Theorem 7.3.6 are given next:

I Input parameter < = 9;
I Convergence time )2 = 9
I Bound on the tracking error � = 0.18;
I Bound on the steady-state error �BB = 0.

These simulations show how the protocols steer the agents to
track the time-varying maximum value D(:) among the reference
signals, corroborating the characterization of the convergence
times and the bound on the errors given in Theorems 7.3.3-7.3.6
and Corollaries 7.3.5-7.3.7.

Example 2: design trade-off for DMAC Protocol

As a second simulation we consider the same network and initial-
ization of Section 7.5. The time-varying input D6(:) is a sinusoidal
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signal given by

D6(:) = D(:) + 0.2 sin
(
:

10

)
,

with initial condition D(0) = 0, which is also the maximum signal
to be tracked since all other inputs stay constant at −1. Notice that
for this signal the change is bounded byΠ = 1.99.

Fig. 7.4 show the evolution of the output variables (dashed red
lines) and the maximum time-varying input (solid blue line). In
particular, in the left plot the DMAC Protocol has been designed
with 
 = 0.2, while the right plot with 
 = 0.5. We notice that the
design of 
 = 0.2 provides a greater convergence time )2 = 70 and
a smaller tracking error 4 ≤ 0.2 compared to the design 
 = 0.5
which gives a convergence time )2 = 35 and a tracking error
4(:) ≤ 0.4. Thus, the design of 
 provides a trade-off between
convergence time and tracking error.

Example 3: dynamic size estimation

We choose to run simulations of size estimation over scale-free
networks [6, 9]. A scale-free network is a network whose degree
distribution follows a power law, at least asymptotically. That is,
the fraction of nodes in the network having : connections to other
nodes goes for large values of : as :−�, where the parameter
� ∈ ℝ typically is in the range [2, 3]. Such networks are known
to be ultrasmall, as proved in [40], meaning that their diameter
scales very slow with the dimension of the network, behaving as
3 ∼ ln ln#.

0 5 10 15 20 25 30 35 40 45 50 55 60 65

85

90

95

100

Time k (102)

n(k) DMAC EDMAC

Figure 7.5: Dynamic Size
Estimation of a network by
means of Protocols 5.
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We randomly generate a scale-free network by means of Barabási
– Albert (BA) model proposed in [6]. This algorithm generates
random scale-free networks using a preferential attachment mech-
anism given an initial small network, no necessarily scale-free.
We use as initial network a line network of 5 nodes, and then we
run the algorithm until a network of = = 100 nodes is generated.
This network has a diameter of the order of the original small
network, i.e., 3 ≈ 5. In order to simulate nodes leaving and joining
the network without losing the connectivity and the scale-free
structure of the graph, we randomly deactivate or activate some
of the last 25 nodes added to the network by the algorithm every
5 · 102 steps.

Fig. 7.5 shows the estimation of the size of a network by means of
Protocol 5 which makes use of one of the dynamic max-consensus
protocols proposed in Section 7.3, i.e., the DMAC protocol given
in Protocol 1 and the EDMAC protocols given in Protocol 3; this
strategy constitutes a generalization of the method proposed
in [225] to open networks.
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Average state observer 8
In this chapterwe focus on the problem of estimating the average of
unmeasured nodes in a network [144, 170, 197]. The development of
state estimators is even a more critical task on large scale networks,
where the dimension of the system is very high and thus a dense
deployment of computational resources and sensing gateway
devices is required [142, 188, 209]. Thus, in such networks the
number of measured states ? is assumed to be much smaller than
the total number of states =, i.e., = � ?. In particular, denotingwith
: = =−? the number of unmeasured nodes, we consider linear and
time-invariant networks where only a few nodes measurements
are available,

¤G(C) = �G(C) + �D(C)
H(C) =

[
0 �?

]
G(C)

and we consider the estimation of the average of the unmeasured
part of the network, namely the quantity

I(C) =
[
1
=1

ᵀ
:

0
ᵀ
?

]
G(C).

We first review the related literature in Section 8.1 and then in
Section 8.2 we formally define the problem. The main contribution
are developed in Section 8.3 and are threefold: 1) we propose two
observer design procedures enabling the average estimation with-
out being affected by the size of the system and thus suitable to be
employed on large-scale networks; 2) we derive a necessary and
sufficient condition for exact estimation; 3) due to the restrictive
nature of the latter condition, we prove the boundedness of the
asymptotic estimation error and devise an optimal choice of the
design parameters achieving its minimization when such a condi-
tion is not met. Finally, in Section 8.4 simulations corroborating
the theoretical results are provided.

8.1 Related literature

The estimation of the average state of a large-scale system has
nothing to do with consensus on the average or with the other
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consensus problems we have previously considered in this the-
sis. Thus, in this section we review the literature related to this
problem.

The fields of applications of this problem are several. For instance,
having a real-time estimation of the average traffic intensity on
some portion of a portion of a traffic networkmay help to promptly
prevent congestion situations [42]. Similarly, it may be useful the
estimation of the average proportion of people infected during
an epidemic [152], or influenced by a leader opinion [139], in a
specific geographic area through a network where people are in-
terconnected on the basis of their common social activities. Other
examples may include also the thermal comfort control of smart
buildings through a sensor network [56] and the monitoring of
power grids [56]. Such systems require tremendous amount of
computational and sensing resources for monitoring purposes
and the available computational resources often cannot handle the
complexity of such systems. Such limitations make the full esti-
mation of the network’s state a challenging task. Nevertheless, for
control and monitoring, the knowledge of an aggregated quantity
of the state is often sufficient. For instance, in positive systems [191],
the average of the state vector provides a suitable estimate for the
state norm, which finds applications in feedback stabilization [127].
Thus we study the estimation of an average state for LTI systems
in this paper.

We follow the approach of functional observers[48] and inspired
by the rich literature based on clustered-oriented model reduction
schemes [16], we address the problem from a lower-order projec-
tion of the original system. In particular, our goal is to estimate
the average of unmeasured part of the state vector, which is ag-
gregated to obtain a system with dimension equal to the number
of measured states plus one. Such a projection technique has the
benefit of enabling the design of a reduced-order average observer
for large-scale systems, thus maintaining tractable and scale-free
the complexity of the estimation task and overcoming strong con-
ditions required by standard techniques [7, 71, 163]. However, the
drawback is the emergence of amatched and unmatched unknown
inputs that encode the information that has been left out through
the projection. In the context of state-estimation on linear systems
with unknown inputs, sliding mode techniques are often privi-
leged to linear techniques because of their inherent robustness
against certain parameter variations, and matched unknown in-
puts, cfr [76, 215] with [239]. Thus, These nonlinear observers
are also well-suited to be combined with other robust control
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techniques to attenuate also unmatched perturbation affecting the
system dynamics, see [36, 53]. This handles the issue of complexity
in large-scale network systems and enables us to design an ob-
server whose dimension does not scale with the dimension of the
original system, hence the term “scale-free estimation,” similar to
which is introduced in [35]. The problem of estimating a function
of the state vector arises in many applications.

8.2 Average state observation problem

Consider a linear time-invariant system

¤G(C) = �G(C) + �D(C)
H(C) = �G(C)

(8.1)

where G(C) ∈ ℝ= is the state, D(C) ∈ ℝ@ is the input, H(C) ∈ ℝ? is
the measured states at time C ∈ ℝ≥0, and where � = [08 9] ∈ ℝ=×= ,
� ∈ ℝ=×@ , and � = ($?×: , �?) ∈ ℝ?×= . Unless strictly necessary, in
the reminder of the paper the dependence from C is dropped for
economy.

Without loss of generality, the state vector is partitioned as G =
[GD , H]ᵀ, where GD ∈ ℝ: is the vector of the unmeasured states and
H ∈ ℝ? denotes the vector of the measured states. System (8.1) is
thus rewritten as follows[

¤GD
H

]
=

[
�11 �12
�21 �22

]
︸       ︷︷       ︸

�

[
GD
H

]
+

[
�1
�2

]
︸︷︷︸
�

D (8.2)

In large-scale networks the number = of interconnected systems
is very high and only a limited number ? of gateway nodes is
available formonitoring purposes, thus it usually holds that ? � =.
Because of that, usually the system is not observable, i.e., it is not
possible to exactly estimate the whole unmeasured part of the
system GD with the available outputs H. However, in a certain
number of applications, the problem of estimating a function of
the state vector arises, without the need of estimating the entire
state vector. In this work we focus on estimating the average of the
unmeasured part of the state. Consider the linear time-invariant
system (8.2) whose state is partitioned into unmeasured GD and
measured H. Design a state observer enabling the estimation of the
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following aggregated scalar function

I(C) = 1
:
1
ᵀ
:
· GD(C), (8.3)

which represents the averaged value of the unmeasured states of
the system. This suggests one should seek functional observers
with a reduced dimension with respect to a full-state observer.
Following the approach proposed in [169, 196], we are going to
project system (8.1) into a lower order systemwith state I = [I, H]ᵀ,
in which the unknown average state I(C) as in (8.3) is revealed. By
letting

I = %G, with % =

[ 1
:1

ᵀ
:

0
ᵀ
?

0?×: �?

]
∈ ℝ(?+1)×= , (8.4)

one has the following reduced-order system[
¤I
¤H

]
=

[
�11 �12
�21 �22

]
︸      ︷︷      ︸

�

[
I

H

]
+

[
�1
�2

]
︸︷︷︸
�

D +
[
�1
�2

]
︸︷︷︸

�

� (8.5)

where

� =

[ 1
:1

ᵀ
:
�111:

1
:1

ᵀ
:
�12

�211: �22

]
, � =

[ 1
:1

ᵀ
:
�1

�2

]
, � =

[ 1
:1

ᵀ
:
�11

�21

]
,

and �(C) ∈ ℝ: is an unknown input vector defined as

�(C) =
(
�: −

1
:
1: · 1ᵀ:

)
GD(C). (8.6)

Notice that, as a result of lower order projection, it is not possible
to reconstruct the space GD ∈ ℝ: from I ∈ ℝ. In particular, the
unknown input � accounts for what is missed. It represents the
element-wise deviation of each component of the unmeasured
vector GD to the average quantity I(C) as in (8.3), thus its mean is
zero at any time, i.e.,

1
ᵀ
:
· �(C) = 0, C ∈ ℝ≥0. (8.7)

The problem of estimating the time-varying average of the unmea-
sured states of a linear time-invariant system in (8.2) is equivalent
to the problem of observing the whole state of its projected system
in (8.5). If on one hand the reduction of dimensionality allows one
to maintain tractable and scale-free the analysis, on the other it
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introduces the drawback of the unknown input �(C) in (8.6), which
encodes what is left out through the projection. In the remainder
of the paper, we make the next standing assumptions.

Assumption 8.2.1 The system (8.2) is stable and the inputs are
bounded, namely, one of the following holds:

I eig(�) ⊂ �≤0 and
∫ ∞

0 ||D(C)||3C < ∞,
I eig(�) ⊂ �<0 and ||D(C)|| < ∞ for all C ∈ ℝ≥0.

Assumption 8.2.2 The pair (�, �%+) Given a matrix �, the ma-
trix �∗ denotes its pseu-
doinverse.

of system (8.5) is observable.

Assumption 8.2.3 The actual value of (8.3) is bounded by a known
function �̄(C), namely, ‖�(C)‖∞ ≤ �̄(C), for all C ∈ ℝ≥0.

All the above assumptions are reasonable and widely accepted.
Assumption 8.2.1 is reasonable in the estimation of aggregated
quantities, such as the average, because it mainly concerns analysis
and monitoring of existing networks rather than for their output-
feedback stabilization; Assumption 8.2.2 is typical in the design of
sliding mode observers, see [215]-[68]; Assumption 8.2.3 comes
directly from Assumption 8.2.1, in fact the boundedness of the
system (8.2) implies that the unknown input in (8.3) is bounded
as well.

In the next two subsections we present two observer designs
enabling the average estimationof the averageof unmeasured states
of system in (8.2) whose dynamics is described by its projection
system in (8.5), in spite of the unknown input vector �(C).

8.3 Proposed observer designs

Linear observer design

We propose a linear observer taking the form

¤̂F = �∗1F̂ + �∗2H + �∗D,
Î = F̂ − !H

(8.8)

with
�∗1 = �11 + !�21, �∗2 = �12 + !�22 − �∗1!,
�∗ = �1 + !�2, �∗ = �1 + !�2

! = (
1ᵀ
:
− �1)�+2

(8.9)
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where Î ∈ ℝ represent the state estimate for I ∈ ℝ and ! ∈ ℝ1×? is
the only design parameter, which constitutes an open loop matrix
gain. The average estimation error is given by

4I = Î − I. (8.10)

Sliding mode design

We propose an average observer taking the form[ ¤̂I
¤̂H

]
=

[
�11 �12
�21 �22

]
︸      ︷︷      ︸

�

[
Î

Ĥ

]
+

[
�1
�2

]
︸︷︷︸
�

D +
[
�1
�2

]
︸︷︷︸
�

4H +
[
!

−�

]
� (8.11)

with
�1 = −�12, �2 =�

B
22 − �22

! = (
1ᵀ
:
− �1)�+2

(8.12)

where Î ∈ ℝ represent the state estimate for I ∈ ℝ, matrices
�1 ∈ ℝ1×? , �2 ∈ ℝ?×? and ! ∈ ℝ1×? are constant feedback gains,
� is a discontinuous vector defined as

� = � · sign(4H), with � ∈ ℝ+.

and the average and output estimation errors are

4I = Î − I, 4H = Ĥ − H. (8.13)

The design parameters are the !, �B22 and �. This observer design
can be seen as an application of the Utkin observer [68, Chapter
6.2.1], with additional Luenberger-type gains and subjected to an
unknown input vector �(C) affecting the reference system model.
Furthermore, we address also unmatched perturbation due to the
presence of the unknown input in the dynamics of the unmea-
sured states, in contrast with the typical sliding mode observer
formulations, cfr. [36, 53] with [68, 76, 215].

Exact estimation

Theorem 8.3.1 Consider the linear large-scale system in (8.1) with its
lower order projection in (8.5), and letAssumptions 8.2.1, 8.2.2, and 8.2.3
be in force. Consider one of the two observer designs:

I The linear observer (8.8) with design (8.9);
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I The slidingmode observer (8.11)with design (8.12) and eig{�B22} ∈
�
?

<0, and � > ‖�21I‖∞ + ‖�2�̄‖∞.

The average estimation error 4I = Î− I converges to zero exponentially
with rate

�(
) = �1(� − �+2 �2)1: + 
1ᵀ:�
+
2 �21: , (8.14)

if and only if it holds that

rank
{[

1ᵀ

:
− �1
�2

]}
= rank {�2} , (8.15)

with


 <
�1(�+2 �2 − ))1:

1
ᵀ
:
�+2 �21:

. (8.16)

then the average estimation error

Proof. The first step of the proof consists in showing that the aver-
age estimation error 4I for both the observer design has dynamics

¤4I = (�11 + !�21)4I − (�1 + !�2)�.

For the linear design it can be derived by simple substitution,
while for the sliding mode observer one proceeds as follows. By
selecting the design matrices �1 and �2 accordingly with (8.12),
the estimation errors in (8.13) have dynamics

¤4I = �114I − �1� + !�
¤4H = �214I + �B224H − �2� − �.

Notice that the evolution of the average estimation error 4I is
decoupled from that of the output estimation error 4H , but not the
vice-versa. By means of the Popov-Belevitch-Hautus rank test [68,
Proposition 3.3] and by Assumption 8.2.2, one derives that also
the pair (�11, �21) is observable, thus that �21 ≠ 0. Such condition
is necessary as also discussed in [170].

Since the unknown input �(C) given in (8.6) is bounded by As-
sumption 8.2.1 and �B22 can be arbitrarily designed such that
eig{�B22} ∈ �

?

<0, then 4H can be made bounded-input bounded-
state stable. By considering the candidate Lyapunov function
+ = 124ᵀH · 4H and by differentiating it along the trajectories of 4H ,
it results that ¤+ = 4

ᵀ
H · ¤4H < −&

√
+ < 0 with & > 0, if and only

if � ≥ ‖�21I1‖∞ + ‖�2�̄‖∞ + &. This implies that an ideal sliding
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motion ¤4H = 4H = 0? is guaranteed to take place in finite time.
During the sliding motion the error dynamics take the form

¤4I = �114I − �1� + !�4@ 0 = �214I − �2� − �4@ ,

and substituting for �4@ yelds

¤4I = (�11 + !�21)4I − (�1 + !�2)�. (8.17)

The rest of the proof applies to both observer designs. By recalling
property (8.6), it holds that

(�1 + !�2)�(C) = 0, ∀C ≥ 0

if and only if ! ∈ ℝ?×1 is such that

�1 + !�2 = 
1ᵀ
:
, (8.18)

with 
 ∈ ℝ. By the Rouché–Capelli theorem, the system of linear
equations (8.18), with ! being the row vector of unknowns, is well-
posed if and only if the condition (8.15) given in the statement of
the theorem holds. In this case, the design of !, which is the same
in the linear observer (see (8.9)) and in the sliding mode observer
(see (8.12)), is the solution to the system of equations (8.18), and
the error dynamics (8.17) reduces to ¤4I = (�11 + !�21)4I where

(�11 + !�21) = �11: + !�211:

= �11: +
(

1ᵀ

:
− �1

)
�+2 �21:

= �1(� − �+2 �2)1: + 
1ᵀ:�
+
2 �21:

= �(
) < 0

from which the last tuning constraint and the expression of the
convergence rate are derived.

Corollary 8.3.2 Consider the linear large-scale system in (8.1)with its
lower order projection in (8.5), and letAssumptions 8.2.1, 8.2.2, and 8.2.3
be in force. Consider one of the observer design of Theorem 8.3.1 and
condition (8.15) holding true. If and only if the next relation is satisfied

rank
{[
1
ᵀ
:
�1

]}
= 1, (8.19)

then the convergence rate of the estimation error � given in (8.14) can
be chosen arbitrarily.
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Proof. The convergence rate of the estimation error �(
) is a func-
tion of 
, thus it can be chosen arbitrarily if and only if 
 can be
chosen arbitrarily. The parameter 
 can be chosen arbitrarily if
and only if (8.19) holds true, since in this case 
 does not appear
anymore in the rank condition (8.15), which reduces to

rank
{[
�1
�2

]}
= rank {�2} .

It is very likely that a system as in (8.1) does not satisfy condi-
tion (8.15), thus preventing an observer designed according to
Theorem 8.3.1 from achieving an exact estimation with zero error.
In fact, for system (8.1) to satisfy (8.15), it is necessary that all
unmeasured nodes are connected to at least one output node.
This condition is however often unrealistic when the system size
is large, because it not only requires a strategic deployment of
sensors often impracticable, but it also requires a large number of
measured nodes, while in most real cases only a limited number
of measurement node is available. From a mathematical point of
view, when this condition is not met the system of equations (8.18)
is ill-posed and thus the effect of the unknown input �(C) can not
be nullified. In the next theorem, we show that even if (8.15) is not
verified, an observer designed according to Theorem 8.3.1 provides
an estimation of the average state (8.3) with bounded error.

Theorem 8.3.3 Consider the linear large-scale system in (8.1) with its
lower order projection in (8.5), and letAssumptions 8.2.1, 8.2.2, and 8.2.3
be in force. Consider one of the observer design of Theorem 8.3.1. Then,
the average error 4I converges asymptotically within a boundary layer
4̄I , i.e.,

lim
C→∞
‖4I(C)‖ ≤ 4̄I . (8.20)

Proof. Following the proof of Theorem 8.3.1, the average estima-
tion error 4I is bounded-input bounded-state stable because of
Assumption 8.2.1 and its dynamics is given by

¤4I = �(
)4I − (�1 + !�2)�.

However, if condition (8.15) is not satisfied, then the effect of the
unknown input �(C) can not be nullified anymore because the
system of equations �1 + !�2 = 
1ᵀ

:
is not well-posed. The average
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error trajectory 4I(C) satisfies

|4I(C)| ≤
��4�(
)·C4I(0)�� + ����∫ ᵀ

0
4�(
)·(C−�)(�1 + !�2)�(�)3�

���� .
Since 
 is strictly negative, then limC→∞ |4�(
)·C | = 0. Moreover, we
can derive

lim
C→∞
|4I(C)| ≤ lim

C→∞

∫ ᵀ

0

��4�(
)(C−�)(�1 + !�2)�(�)
�� 3�

and by submultiplicativity of the norm

lim
C→∞
|4I(C)| ≤ lim

C→∞

∫ ᵀ

0

��4�(
)(C−�)�� · |(�1 + !�2)�(�)| 3�.

Since the two functions argument of the above integral are non-
negative by definition, it holds that (see [22, Sect. 23])

lim
C→∞
|4I(C)| ≤

[
lim
C→∞

∫ C

0

��4�(
)(C−�)�� 3�] · [ max
C≥0
‖(�1 + !�2)�(�)‖

]
Finally, by a change of variable and solving the definite integral,
one obtains the next upperbound

lim
C→∞

∫ C

0

��4�(
)(C−�)��3� = ∫ ∞

0

��4�(
)(�)��3� =
1
|�(
)| (8.21)

Considering (8.21), letting ! = �1 + !�2 − 
1ᵀ: and invoking prop-
erty (8.7), the following chain of inequalities takes place,

lim
C→∞
|4I(C)| ≤ 1

|�(
)|max
C≥0
||(�1 + !�2)�(C)||2

≤
1
|�(
)|max

C≥0

������(
1ᵀ: + !)
�(C)

������
2

≤
1
|�(
)|max

C≥0

����!�(C)����2
≤
‖!‖2
|�(
)| max

C≥0
||�(C)||2 (8.22)

thus, recalling Assumption 8.2.3, the proof is complete.

Moreover, the estimation provided by the observers is optimal in
the sense that the effect of theunmatchedpart of theunknown input
vector �(C) is minimized, as proved in the following theorem.

Theorem 8.3.4 Consider the linear large-scale system in (8.1) with its
lower order projection in (8.5), and letAssumptions 8.2.1, 8.2.2, and 8.2.3
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be in force. Consider one of the observer design of Theorem 8.3.1. Then,
the bound on the average estimation error

4̄I(
) =
‖�1 + !�2 − 
1ᵀ: ‖2

|�(
)| max
C≥0
||�(C)||2 (8.23)

is minimized by the design of !.

Proof. We start by recalling the bound (8.22) obtained in the proof
of Theorem 8.3.3,

4̄I =
‖!(!)‖2
|�(
)| max

C≥0
||�(C)||2,

with
!(!) = �1 + !�2 − 
1ᵀ: ,

The bound on the error can be minimized by the choice of ! by
solving the following least square problem

!∗ = arg min
!∈ℝ1×?

‖!(!)‖2 (8.24)

According to the Projection theorem [145, p. 51], or similarly with
[36, Proof of Proposition 2], the optimal solution !∗ to (8.24) is
given by

!∗ = (
1ᵀ
:
− �1)�+2 ,

which corresponds to the design of ! in both observers.

From the constructing proof and result of the previous theorem
and its corollary, it is straightforward to notice that not only the
average estimation error is bounded by (8.20), but it is dependent
on the parameter 
, which is a free design parameter. Therefore,
one can think of choosing the optimal 
 such that this error is
minimized.

Corollary 8.3.5 Consider the linear large-scale system in (8.1)with its
lower order projection in (8.5), and letAssumptions 8.2.1, 8.2.2, and 8.2.3
be in force. Consider one of the observer design of Theorem 8.3.1. Then,
the choice


 = argmin



����
?ᵀ − @ᵀ����
(
?ᵀ − @ᵀ)1 + :
 with

?ᵀ = 1ᵀ(�+2 �2 − �)
@ᵀ = �1(�+2 �2 − �)

(8.25)
minimizes the average estimation error (8.20).
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Figure 8.1: Graphs of Ex-
ample 1 (above) and Exam-
ple 2 (below)

[230] Walter and Contr-
eras (2012), Compartmental
modeling with networks.

It can be noticed that both
observers achieve asymp-
totic estimation with same
decaying rate.

It can be noticed that the
choice of the parameter

 trades-off convergence-
time with estimation error.

8.4 Simulations and discussion

Here numerical simulations illustrating the effectiveness of the
proposed observer design procedures are discussed. Simulations
were performed on the MATLABr/Simulink environment with
the Euler fixed-step solver and sampling time of 10−5 seconds. For
the sake of clarity, in the following we denote with �3 = {08 9}
the adjacency matrix representing graph G, with 38 =

∑=
8=1 08 9 the

degree of each node and with � = diag(3) the degree matrix, and
with !? = � − �3 the Laplacian matrix of graph G.

Example 1:Compartmentalmodels are used to describe the flowof a
substance between different parts (compartments) of a system. Each
compartment is assumed to be an homogeneous entity, i.e., the
distribution of the substance within it can be considered uniform.
They are also often used to model population dynamics: in such a
case, a compartment represent a class of individuals with the same
property. Average estimation in such models is intriguing since
one may not be interested in estimating the content of a substance
in each compartment, but only the average content in a subset of
them.

Here, we consider a linear compartmental system [230] of = = 11
compartments, with G8(C) ∈ ℝ denoting the state of the 8-th com-
partment and G = [Gᵀ1 , G

ᵀ
2 , . . . , G

ᵀ
=]ᵀ ∈ ℝ= denoting the stacking of

the states. Interconnections among the compartments are directed
and according to Fig. 8.1: each directed edge (8 , 9) denotes the flow
from compartment 8 to compartment 9. Furthermore, white and
grey nodes denote, respectively, the unmeasured and measured
states, thus leading to the linear dynamical system in standard
form of (8.1) where

� = −!? , � = �ᵀ =
[
03×8 �3

]
where !? is the Laplacian matrix and the inputs are

D(C) = 10
[
sin(C) sin(10C) sin(20C)

]ᵀ
.

By constructing thematrix� and its partitions�8 9 with 8 , 9 = {1, 2}
it can be noticed that the necessary and sufficient conditions of
Theorem 8.3.1 and Corollary 8.3.2 hold since 1ᵀ�11 = 1ᵀ�21 = 1ᵀ,
thus enabling exact average observation.

In order to effectively compare the proposed observer designs,
we fix the convergence rate � of both observers at � = −3. The
initialization of the system lies in the range ℝ=

[0,3]. According to



8 Average state observer 135

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Time t

ẑl(t) ẑs(t) z(t)

0 2 4 6
0

0.5

1

1.5

2

Time t
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observer. On the right, the
absolute estimation errors
are plotted.
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sive coupling, dissipation,
and synchronization’.

Theorem 8.3.1, the linear observer and the sliding mode observer
can be characterized by the following parameters

!ᵀ = −0.25 · 1ᵀ, � = 5, �B22 = −10 · �.

Fig. 8.2 shows the trajectories of the observers and the average
profile to be estimated, along with their estimation error. In partic-
ular:

I Îℓ (C) and 4̂ℓ (C) denote the state estimation and the error
estimation of the linear observer, respectively;

I ÎB(C) and 4̂B(C) denote the state estimation and the error
estimation of the sliding mode observer, respectively.

Example 2: Here, we consider a linear reaction-diffusion system
[17, 98] of = = 100 substances, with G8(C) ∈ ℝ denoting the state
of the 8-th substance and G = [Gᵀ1 , G

ᵀ
2 , . . . , G

ᵀ
=]ᵀ ∈ ℝ= denoting

the stacking of the states. Interconnections among the compart-
ments are undirected and according to Fig. 8.1: each edge (8 , 9)
or (9 , 8) denotes the transformation of substance 8 into 9 and vice
versa. Furthermore, white and grey nodes denote, respectively,
the unmeasured and measured states, thus leading to the linear
dynamical system in standard form of (8.1) where

� = −&!? −ℝ, �ᵀ =
[
04×96 �4

]
where !? is the Laplacian matrix, ℝ, & ∈ ℝ= are the diagonal
matrices of diffusion coefficients and reaction rates, respectively,
and the inputs are such that

D1(C) = sin(0.1C) applied to nodes 97 and 98,
D2(C) = sin(C) applied to nodes 99 and 100,
D3(C) = 1 applied to the other boundary nodes.

Having chosen & = � and ' = 0.2 · �, by constructing the matrix
� and its partitions �8 9 with 8 , 9 = {1, 2} it can be noticed that the
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Figure 8.3: Simulation
plots for the Example 2
with 
 minimizing the es-
timation error. On the left,
the state trajectories of the
system are plotted in black,
while the estimations are
given in blue for the linear
observer and in red for the
sliding mode observer. On
the right, the absolute esti-
mation errors are plotted.
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Figure 8.4: Simulation
plots for the Example 2
with 
 guaranteeing a
faster convergence rate. On
the left, the state trajecto-
ries of the system are plot-
ted in black, while the esti-
mations are given in blue
for the linear observer and
in red for the sliding mode
observer. On the right, the
absolute estimation errors
are plotted.

It can be noticed that the
choice of the parameter

 trades-off convergence-
time with estimation error.

necessary and sufficient condition of Theorem 8.3.1 does not hold,
thus preventing exact average observation.

As a first simulation, we choose 
 = −2.1 · 10−3 which minimizes
the estimation error for both observers and gives a decay rate
equals to � = 0.2. The initialization of the system lies in the range
ℝ=
[0,3]. The observers are designed with

!ᵀ = −0.0104 · 1ᵀ, � = 5, �B22 = −10 · �.

In contrast, we simulate also the case in which the decaying
rate is not chosen to be the one minimizing the error, but is
chosen in order to reduce the convergence time. For instance, we
choose 
 = 4.2 · 10−2 which gives a convergence rate � = 0.4.
Figs. 8.3 and 8.4 shows the trajectories of the two observer and
their estimation errors with the two design choices. In particular:

I Îℓ (C) and 4̂ℓ (C) denote the state estimation and the error
estimation of the linear observer, respectively;

I ÎB(C) and 4̂B(C) denote the state estimation and the error
estimation of the sliding mode observer, respectively.
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Concluding remarks 9
In this thesis, several research topics pertaining to the domain
of multi-agent and large-scale dynamical systems have been ad-
dressed, and several improvements with respect to the state of the
art have been provided.

In the first part of the thesis, we have considered nonlinear MASs
which are characterized by the properties of order-preservation
and subhomogeneity, which are a super class of linear MASs ruled
by row-stochastic matrices. It is known that the Perron-Frobenius
theory for row-stochastic matrices has immediate consequences for
the iterative behavior of the matrix powers, which can be exploited
to study the stability of trajectories of the associated linear system:
consider a linear system

G(: + 1) = �G(:), G(:) ∈ ℝ=

then, if � is row-stochastic and if � is primitive, then all trajecto-
ries of the MAS converge to an equilibrium point. By means of
recent nonlinear extensions of Perron-Frobenius theory, we have
generalized this result to nonlinear maps possessing the property
of type-K order-preservation and plus-subhomogeneity: consider
a nonlinear system

G(: + 1) = 5 (G(:)), G(:) ∈ ℝ=

then, if 5 is type-K order-preserving and plus-subhomogeneous
and if 5 contains at least a fixed point, then all trajectories of the
system converges to an equilibrium point. A similar result has
been provided for nonlinear systems ruled by subhomogeneous
maps acting on the positive orthant ℝ=

+. These results, which are
given in Chapter 3, improve the state-of-the-art since they identify
classes of nonlinear systems for which global asymptotical stability
can be established by only checking that there exists at least an
equilibrium point. Moreover, the proof techniques do not rely on
standard methods (e.g., Lyapunov theory) and thus they can be
used as an alternative strategy to perform a stability analysis.

In subsequent Chapters 4-5 these key results have been exploited
in the context of nonlinear MASs whose vector field is differen-
tiable, both in discrete and continuous-time. We have provided
sufficient conditions on the local interaction rule 58 of the agents
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in a network which ensure that the global map 5 falls in the above
mentioned classes of nonlinear maps, establishing in this way the
stability of their trajectories toward an equilibrium point. Such suf-
ficient conditions concern the sign structure of the Jacobian matrix
� 5 of map 5 and constitutes a generalization of the well-known
Kamke-condition to type-K order-preserving systems. Moreover,
the problem of consensus has been solved by showing that if the
consensus space contains only equilibrium points, the presence
of a globally reachable node, which is a standard connectivity
assumption on the network topology, is sufficient to solve the prob-
lem. This theory advances the state-of-the-art since it characterizes
a general family of nonlinear MASs for which stability results
and convergence results to the consensus state are available, thus
constituting a novel tool to their analysis and design.

In the second part of the thesis three different problems related to
dynamic estimation in large network have been considered.

In Chapter 6 the problem of inducing desynchronization in a
network of diffusively coupled harmonic oscillators has been for-
malized and solved by means of a local mean-field feedback to
the oscillators. The problem of desynchronization in harmonic
oscillators is made more complicated than standard phase oscil-
lators by the fact that each oscillator may oscillate at different
amplitudes: our definition of desynchronization coincides with a
null-average behavior of the oscillators’ outputs, excluding trivial
non-oscillatory behaviors. We have provided the first design of a
local control action solving this problem, which exploits the pres-
ence of the Fiedler vector as dominant eigenvector associated to a
couple of imaginary conjiugate eigenvalues to make the network
oscillate with zero mean and thus achieving desynchronization in
the sense described above. It has also been proven that, and this is
quite intuitive, the employment of the proposed control action in
networks of single integrator agents constitutes a novel protocol to
solve the distributed estimation of the Fiedler vector. This protocol
is shown to be faster and more accurate then other protocols in
the literature, other than not requiring a specific initialization of
the network. The only drawback of the proposed protocol is the
requirement of the knowledge of the algebraic connectivity of the
graph, which makes it inoperable in time-varying networks.

In Chapter 7 the problemof counting the number of active agents in
an open network has been considered. The problem is complicated
since the agents in the network do not have any precise knowledge
about the network and their identity is assumed to be kept hidden
in the network. An interesting strategy is to make each agent
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extract a random number out of a distribution, and then infer the
number of agents who took part to the experiment from some
function of the randomly generated numbers. In particular, we
have formally described how this strategy can be implemented in
a totally distributed way: each agent generates the number as soon
as it joins the network then run a distributed algorithm to estimate
themaximum among the generated numbers and infer the number
of active agents by Maximum Likelihood estimation. However,
the actual literature lacks of a dynamic distributed algorithm to
solve the consensus problem on the max time-varying value. Thus,
we have proposed the two protocols solving for the first time
the dynamic consensus problem on the max value. The protocols
converge in finite time and guarantee an apriori bound on the
tracking error. These protocols are employed and characrerized to
dynamically estimate the size of a network, which was an unsolved
problem of the literature.

In Chapter 8 we have considered the problem of monitoring the
average state of a large-scale network when only a few measure-
ments are available to a centralized observer. This problem is
totally different from the consensus problem considered in previ-
ous chapter. The strategy employed to solve the problem considers
a projection of the original system to a lower order system and
designing observers for the reduced system; such approach is espe-
cially effective when dealing with large networks since it reduces
the complexity of the problem. We have proposed two different
observer designs, a linear design and a sliding mode design: in
particular, the dimension of these observer do not scale with the
dimension of the network. Necessary and sufficient conditions for
the existence of these observers are provided, which are however
very restrictive. Thus, we have also characterized the performance
of this observers in the case of these conditions are not met, and
we have shown that a bounded error can always be achieved and
traded-off with convergence time.

9.1 Open problems

The research problems addressed and the results proposed in this
thesis have left many open problems and paved the way for novel
research directions.
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First part

The stability and convergence results presented in Chapter 3 may
be possibly extended to more complicated scenarions. We make
here a brief list of possible extensions:

I Consider maps which are not differentiable: for instance, the
author believes that the results may be extended to maps
which are sub-differentiable;

I Consider time-varying maps: switching, time-dependent,
state-dependent and so on;

I Consider nonlinear spaces and time-variant cones;
I Consider non-autonomous agents.

These extensions would be then exploited in the context of MASs,
thus allowing a straighforward generalization of results in Chap-
ters 4-5 to the scenarios described above. We remark that studying
the consensus problem in nonlinear MASs under the above sug-
gested examples is a very difficult task: in the current literature
no general few results of this kind are provided and most of it
consider specific protocols instead of trying to provide general
class of systems. Another interesting problem is the one of consid-
ering open MASs, where the agents are allowed to join or leave
the network.

Moreover, it could be of great interest to extend the results for the
specific applications considered in the latter chapters as suggested
next:

I The protocol proposed in Chapter 4 to solve the consensus
problem on the max value in discrete-time could be general-
ized to the continuous case. Another interesting application
could be trying to generalize the protocol to estimate the
maximum of time-varying reference signals given as inputs
to the agents, which is an open problem in discrete-time
MASs;

I The synchronization results provided in Chapter 5 for gen-
eralized oscillators with directed coupling do not provide
a sharp characterization of the coupling functions ensur-
ing global synchronization conditions, thus this problem
remains open. We remark that it has been highlighted that
such a design exists, but it is not provided for arbitrary
network topologies.
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Second part

The main drawback of the local control actions proposed in Chap-
ter 6 to solve the desynchronization problem in networks of diffu-
sively coupled identical harmonic oscillators and to distributedly
estimate the Fiedler vector in networks of single integrators is
the assumption on the a-priori knowledge of algebraic connectiv-
ity. Thus, the most important extension of the proposed protocol
would be to design a coupled dynamic estimator of the algebraic
connectivity. This extension would enable the desynchronization
in networks with time-varying and open networks. Other possible
extensions include directed topologies and heterogeneity of the
oscillators.

The two protocols proposed in Chapter 7 to solve the dynamic con-
sensus problem on the min/max value could be extended to deal
with several challenging assumptions on the network and the com-
munication channels, such as time-delays, noise, packed-losses,
outliers andmany others.However, evenwithout considering these
complicated scenarios, one could think to extend the protocols by
improving their performance. For instance, the author believes that
the DMAC/DMIC protocols could be improved by some adaptive
design of the design parameter, while the EDMAC/EDMIC proto-
cols could be improved by a dynamic estimation of the network’s
diameter.

The two observer designs proposed in Chapter 8 to enable the
estimation of the average of the unmeasured states in a large-scale
networks require the knowledge of the dynamics of the networks.
Therefore, a useful extension would dealing with uncertainties
in the model of the network or measurement errors and distur-
bances.
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Appendix A
The setsℝ,ℕ andℤ denote respectively the set of real, natural and
integer numbers; also ℝ+ and ℤ+ are the set of non-negative real
numbers and non-negative integer numbers. The setℂ denotes the
set of complex numbers. We let 1= ∈ ℝ= (respectively 0= ∈ ℝ=)
be the column vector of dimension = with all entries equal to 1
(respectively 0); the subscript is omitted if clear from the context.

Most of the contents in these appendices takes inspiration from
[32].

A.1 Periodic points of a dynamical system

Discrete-time

Consider a discrete-time dynamical system

G(: + 1) = 5 (G(:).

The state G(:) of the system at time : ∈ ℕ given an initial condition
G(0) = G0 ∈ - is given by 5 :(G0). The trajectory of system (2.1)
starting at G0 is given by T(G, 5 ) = { 5 :(G0) : : ∈ ℤ}. If the map
5 (·) is clear from the context, we simply write T(G0). An trajectory
is said to be periodic of period ? ∈ ℤ+ if for all G? ∈ T(G0, 5 ) it
holds 5 ?(G?) = G? , and G? is called a periodic point. A periodic point
of period ? = 1 is a fixed or equilibrium point G4 and 5 (G4) = G4 . We
denote �( 5 ) = {G ∈ - : 5 (G) = G} the set of all equilibrium points
of map 5 (·). An equilibrium point G4 is said to be Liapunov stable
if for every � > 0 there is � > 0 such that | |G0 − G4 | | < � implies
| | 5 :(G0) − G4 | | < � for any G0 ∈ ℝ and : ∈ ℤ+.

Continuous-time

Consider a continuous-time dynamical system

¤G(C) = 5 (G(C)).
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The state G(C) of the system at time C given an initial condition
G(0) = G0 is given by!(C , G0), where!(C , G0)denotes the solution to
the initial value problem with initial condition G0. The trajectory of
system (2.2) starting at G0 is given by T(G0, 5 ) = {!(C , G0) : C ∈ ℝ}.
If the vector field 5 (·) is clear from the context, we simply write
T(G0). An trajectory is said to be periodic of period ) ∈ ℝ+ if for all
G ∈ T(G0, 5 ) it holds!(C+), G) = G. A periodic trajectory of period
) = 0 contains only one point G4 , which is called an equilibrium
point and 5 (G4) = 0. We denote �( 5 ) = {G ∈ - : 5 (G) = 0} the
set of all equilibrium points of vector field 5 (·). An equilibrium
point G4 is said to be Lyapunov stable if for every � > 0 there is
� > 0 such that | |G0 − G4 | | < � implies | |!(C , G0) − G4 | | < � for any
G0 ∈ ℝ and C ∈ ℝ+.

A.2 Elements of matrix theory

We let �= denote the =-dimensional identity matrix, i.e., a square
matrix of order = with elements in the diagonal equal to 1 and
all others equal to 0. Let � = {08 9} ∈ ℝ=×= denote a square = × =
matrix with real entries 08 9 ∈ ℝ with 8 , 9 ∈ {1, . . . , =}. The matrix
� is symmetric if �)A = �.

For a matrix � ∈ ℝ=×= , � ∈ ℂ is an eigenvalue and E ∈ ℂ=

is an eigenvector if it holds �E = �E. Given an eigenvalue � of
�: its algebraic multiplicity is the multiplicity of � as a root of
the characteristic polynomial ?(�) = det(� − ��); its geometric
multiplicity is the number of linearly-independent eigenvectors
associated to it. An eigenvalue is simple if it has algebraic and
geometric multiplicity equal precisely to 1, and it is semisimple if
the algebraic and geometric multiplicity are equal. The spectrum of
�, denoted as �(�), is the set of eigenvalues of�. The spectral radius
of �, denoted as �(�), is the maximum norm of the eigenvalues of
�, that is, �(�) = max{|�| : � ∈ �(�)}.

A.3 Elements of graph theory

By using notation from algebraic graph theory, we model the
pattern of interactions among the agents in a network with a
graph G(+, �), which consists of a set + = {1, . . . , =} of nodes
representing the agents and a set � = + ×+ of pairs of nodes (9 , 8)
with 8 , 9 ∈ + , called edges. The terms node and agent are often
used as synonyms.
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If not otherwise stated, a graph is considered to be a directed
graph, i.e., each ordered pair (9 , 8) ∈ � denotes a directed edge from
node 9 to node 8.If (9 , 8) ∈ �, then node 9 is said to be a neighbor
of agent 8; the set of neighbors of the 8-th node is denoted as
N8 = { 9 ∈ + : (9 , 8) ∈ �}. A self-loop is an edge from a node to
itself.

A directed path between two nodes 9 and 8 is a finite sequence of
< edges (9: , 8:) ∈ � that joins node 9 to node 8, i.e., 91 = 9, 8< = 8
and 8: = 9:+1 for : = 1, . . . , < − 1. A node 8 is said to be reachable
from node 9 if there exists a directed path from node 9 to node 8. A
node 8 is said to be globally reachable if there exists a directed path
from any node 9 ∈ + to node 8.

An edge (9 , 8) ∈ � is usually to be intended as directed, but if
also (8 , 9) ∈ �, then it is an undirected edge. If all edges in � are
undirected, then it is an undirected graph, otherwise if at least one
edge is directed, then the graph is said to be directed. Self-loops
are not allowed in undirected graphs. Similar definitions apply to
paths. An undirected graph is said to be connected if for any pair of
nodes 8 , 9 ∈ + there exists a path between them, otherwise it is said
to be disconnected. For directed graphs, one can distinguish between
strong connectivity, if there exists a directed path between any pair
of nodes 8 , 9 ∈ + , and weak connectivity, if the undirected version
of the graph is connected. The presence of a globally reachable
node makes the graph a weakly connected graph.
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